OCR MEI C3 (Core Mathematics 3)

Question 1
View details
1 Fig. 1 shows part of the curve \(y = \mathrm { e } ^ { 2 x } \cos x\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{01bdea17-c698-44ae-a45a-7da4de631de4-1_669_1032_459_538} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} Find the coordinates of the turning point P .
Question 2
View details
2 Find the exact gradient of the curve \(y = \ln ( 1 - \cos 2 x )\) at the point with \(x\)-coordinate \(\frac { 1 } { 6 } \pi\).
Question 3
View details
3
  1. Given that \(y = \mathrm { e } ^ { - x } \sin 2 x\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Hence show that the curve \(y = \mathrm { e } ^ { - x } \sin 2 x\) has a stationary point when \(x = \frac { 1 } { 2 } \arctan 2\).
Question 4 4 marks
View details
4 Fig. 8 shows parts of the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\), where \(\mathrm { f } ( x ) = \tan x\) and \(\mathrm { g } ( x ) = 1 + \mathrm { f } \left( x - \frac { 1 } { 4 } \pi \right)\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{01bdea17-c698-44ae-a45a-7da4de631de4-2_687_888_419_609} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Describe a sequence of two transformations which maps the curve \(y = \mathrm { f } ( x )\) to the curve \(y = \mathrm { g } ( x )\). [4] It can be shown that \(\mathrm { g } ( x ) = \frac { 2 \sin x } { \sin x + \cos x }\).
  2. Show that \(\mathrm { g } ^ { \prime } ( x ) = \frac { 2 } { ( \sin x + \cos x ) ^ { 2 } }\). Hence verify that the gradient of \(y = \mathrm { g } ( x )\) at the point \(\left( \frac { 1 } { 4 } \pi , 1 \right)\) is the same as that of \(y = \mathrm { f } ( x )\) at the origin.
  3. By writing \(\tan x = \frac { \sin x } { \cos x }\) and using the substitution \(u = \cos x\), show that \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \mathrm { f } ( x ) \mathrm { d } x = \int _ { \frac { 1 } { \sqrt { 2 } } } ^ { 1 } \frac { 1 } { u } \mathrm {~d} u\). Evaluate this integral exactly.
  4. Hence find the exact area of the region enclosed by the curve \(y = \mathrm { g } ( x )\), the \(x\)-axis and the lines \(x = \frac { 1 } { 4 } \pi\) and \(x = \frac { 1 } { 2 } \pi\).
Question 5
View details
5 Differentiate \(x ^ { 2 } \tan 2 x\).
Question 6
View details
6 Given that \(y = \sqrt [ 3 ] { 1 + x ^ { 2 } }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
Question 7
View details
7 Given that \(y = x ^ { 2 } \sqrt { 1 + 4 x }\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 x ( 5 x + 1 ) } { \sqrt { 1 + 4 x } }\).