OCR MEI C3 (Core Mathematics 3)

Question 1
View details
1 Fig. 4 shows the curve \(y = \mathrm { f } ( x )\), where $$f ( x ) = a + \cos b x , 0 \leqslant x \leqslant 2 \pi ,$$ and \(a\) and \(b\) are positive constants. The curve has stationary points at \(( 0,3 )\) and \(( 2 \pi , 1 )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7825ba53-67eb-4050-a671-85e37a30150a-1_420_616_538_759} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Find \(a\) and \(b\).
  2. Find \(\mathrm { f } ^ { - 1 } ( x )\), and state its domain and range.
Question 2
View details
2 Fig. 9 shows the line \(y = x\) and the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } - 1 \right)\). The line and the curve intersect at the origin and at the point \(\mathrm { P } ( a , a )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7825ba53-67eb-4050-a671-85e37a30150a-2_681_880_461_606} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show that \(\mathrm { e } ^ { a } = 1 + 2 a\).
  2. Show that the area of the region enclosed by the curve, the \(x\)-axis and the line \(x = a\) is \(\frac { 1 } { 2 } a\). Hence find, in terms of \(a\), the area enclosed by the curve and the line \(y = x\).
  3. Show that the inverse function of \(\mathrm { f } ( x )\) is \(\mathrm { g } ( x )\), where \(\mathrm { g } ( x ) = \ln ( 1 + 2 x )\). Add a sketch of \(y = \mathrm { g } ( x )\) to the copy of Fig. 9.
  4. Find the derivatives of \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\). Hence verify that \(\mathrm { g } ^ { \prime } ( a ) = \frac { 1 } { \mathrm { f } ^ { \prime } ( a ) }\). Give a geometrical interpretation of this result.
Question 3
View details
3 The function \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = 1 - 2 \sin x\) for \(- \frac { 1 } { 2 } \pi \leqslant x \leqslant \frac { 1 } { 2 } \pi\). Fig. 3 shows the curve \(y = \mathrm { f } ( x )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7825ba53-67eb-4050-a671-85e37a30150a-3_743_818_414_644} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. Write down the range of the function \(\mathrm { f } ( x )\).
  2. Find the inverse function \(\mathrm { f } ^ { - 1 } ( x )\).
  3. Find \(\mathrm { f } ^ { \prime } ( 0 )\). Hence write down the gradient of \(y = \mathrm { f } ^ { - 1 } ( x )\) at the point \(( 1,0 )\).
Question 4
View details
4 Fig. 6 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = 2 \arcsin x , - 1 \nless \leqslant 1\).
Fig. 6 also shows the curve \(y = \mathrm { g } ( x )\), where \(\mathrm { g } ( x )\) is the inverse function of \(\mathrm { f } ( x )\).
P is the point on the curve \(y = \mathrm { f } ( x )\) with \(x\)-coordinate \(\frac { 1 } { 2 }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7825ba53-67eb-4050-a671-85e37a30150a-4_711_694_620_726} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find the \(y\)-coordinate of P , giving your answer in terms of \(\pi\). The point Q is the reflection of P in \(y = x\).
  2. Find \(\mathrm { g } ( x )\) and its derivative \(\mathrm { g } ^ { \prime } ( x )\). Hence determine the exact gradient of the curve \(y = \mathrm { g } ( x )\) at the point Q . Write down the exact gradient of \(y = \mathrm { f } ( x )\) at the point P .
Question 5
View details
5 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\). The endpoints of the curve are \(\mathrm { P } ( - \pi , 1 )\) and \(\mathrm { Q } ( \pi , 3 )\), and \(\mathrm { f } ( x ) = a + \sin b x\), where \(a\) and \(b\) are constants. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7825ba53-67eb-4050-a671-85e37a30150a-5_661_1259_461_478} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Using Fig. 9, show that \(a = 2\) and \(b = \frac { 1 } { 2 }\).
  2. Find the gradient of the curve \(y = \mathrm { f } ( x )\) at the point ( 0,2 ). Show that there is no point on the curve at which the gradient is greater than this.
  3. Find \(\mathrm { f } ^ { - 1 } ( x )\), and state its domain and range. Write down the gradient of \(y = \mathrm { f } ^ { - 1 } ( x )\) at the point \(( 2,0 )\).
  4. Find the area enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = \pi\).