OCR MEI C3 (Core Mathematics 3)

Question 1
View details
1 Fig. 9 shows the curve with equation \(y ^ { 3 } = \frac { x ^ { 3 } } { 2 x - 1 }\). It has an asymptote \(x = a\) and turning point P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0b4c4935-998c-404f-8fed-9b39b849168e-1_752_864_443_617} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Write down the value of \(a\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 4 x ^ { 3 } - 3 x ^ { 2 } } { 3 y ^ { 2 } ( 2 x - 1 ) ^ { 2 } }\). Hence find the coordinates of the turning point P , giving the \(y\)-coordinate to 3 significant figures.
  3. Show that the substitution \(u = 2 x - 1\) transforms \(\int \frac { x } { \sqrt [ 3 ] { 2 x - 1 } } \mathrm {~d} x\) to \(\frac { 1 } { 4 } \int \left( u ^ { \frac { 2 } { 3 } } + u ^ { - \frac { 1 } { 3 } } \right) \mathrm { d } u\). Hence find the exact area of the region enclosed by the curve \(y ^ { 3 } = \frac { x ^ { 3 } } { 2 x - 1 }\), the \(x\)-axis and the lines \(x = 1\) and \(x = 4.5\).
Question 2
View details
2 Fig. 8 shows the curve \(y = \frac { x } { \sqrt { x - 2 } }\), together with the lines \(y = x\) and \(x = 11\). The curve meets these lines at P and Q respectively. R is the point \(( 11,11 )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0b4c4935-998c-404f-8fed-9b39b849168e-2_606_729_485_699} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Verify that the \(x\)-coordinate of P is 3 .
  2. Show that, for the curve, \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x - 4 } { 2 ( x - 2 ) ^ { \frac { 3 } { 2 } } }\). Hence find the gradient of the curve at P . Use the result to show that the curve is not symmetrical about \(y = x\).
  3. Using the substitution \(u = x - 2\), show that \(\int _ { 3 } ^ { 11 } \frac { x } { \sqrt { x - 2 } } \mathrm {~d} x = 25 \frac { 1 } { 3 }\). Hence find the area of the region PQR bounded by the curve and the lines \(y = x\) and \(x = 11\).
Question 3
View details
3 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), which has a \(y\)-intercept at \(\mathrm { P } ( 0,3 )\), a minimum point at \(\mathrm { Q } ( 1,2 )\), and an asymptote \(x = - 1\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0b4c4935-998c-404f-8fed-9b39b849168e-3_904_937_425_589} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find the coordinates of the images of the points P and Q when the curve \(y = \mathrm { f } ( x )\) is transformed to
    (A) \(y = 2 \mathrm { f } ( x )\),
    (B) \(y = \mathrm { f } ( x + 1 ) + 2\). You are now given that \(\mathrm { f } ( x ) = \frac { x ^ { 2 } + 3 } { x + 1 } , x \neq - 1\).
  2. Find \(\mathrm { f } ^ { \prime } ( x )\), and hence find the coordinates of the other turning point on the curve \(y = \mathrm { f } ( x )\).
  3. Show that \(\mathrm { f } ( x - 1 ) = x - 2 + \frac { 4 } { x }\).
  4. Find \(\int _ { a } ^ { b } \left( x - 2 + \frac { 4 } { x } \right) \mathrm { d } x\) in terms of \(a\) and \(b\). Hence, by choosing suitable values for \(a\) and \(b\), find the exact area enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = 1\).
Question 4
View details
4
  1. Differentiate \(\frac { \ln x } { x ^ { 2 } }\), simplifying your answer.
  2. Using integration by parts, show that \(\int \frac { \ln x } { x ^ { 2 } } \mathrm {~d} x = - \frac { 1 } { x } ( 1 + \ln x ) + c\).