OCR MEI C3 (Core Mathematics 3)

Question 1
View details
1 Show that \(\int _ { 1 } ^ { 2 } \frac { 1 } { \sqrt { 3 x - 2 } } \mathrm {~d} x = \frac { 2 } { 3 }\).
Question 2
View details
2 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), which has a \(y\)-intercept at \(\mathrm { P } ( 0,3 )\), a minimum point at \(\mathrm { Q } ( 1,2 )\), and an asymptote \(x = - 1\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f7049002-f97a-4c83-a7d6-eba28e3b589a-1_904_937_785_604} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find the coordinates of the images of the points P and Q when the curve \(y = \mathrm { f } ( x )\) is transformed to
    (A) \(y = 2 \mathrm { f } ( x )\),
    (B) \(y = \mathrm { f } ( x + 1 ) + 2\). You are now given that \(\mathrm { f } ( x ) = \frac { x ^ { 2 } + 3 } { x + 1 } , x \neq - 1\).
  2. Find \(\mathrm { f } ^ { \prime } ( x )\), and hence find the coordinates of the other turning point on the curve \(y = \mathrm { f } ( x )\).
  3. Show that \(\mathrm { f } ( x - 1 ) = x - 2 + \frac { 4 } { x }\).
  4. Find \(\int _ { a } ^ { b } \left( x - 2 + \frac { 4 } { x } \right) \mathrm { d } x\) in terms of \(a\) and \(b\). Hence, by choosing suitable values for \(a\) and \(b\), find the exact area enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = 1\).
Question 3 3 marks
View details
3 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \sin 3 x \mathrm {~d} x\).
[0pt] [3]
Question 4
View details
4 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { 1 + \cos x }\), for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
P is the point on the curve with \(x\)-coordinate \(\frac { 1 } { 3 } \pi\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f7049002-f97a-4c83-a7d6-eba28e3b589a-2_824_816_885_699} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the \(y\)-coordinate of P .
  2. Find \(\mathrm { f } ^ { \prime } ( x )\). Hence find the gradient of the curve at the point P .
  3. Show that the derivative of \(\frac { \sin x } { 1 + \cos x }\) is \(\frac { 1 } { 1 + \cos x }\). Hence find the exact area of the region enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = \frac { 1 } { 3 } \pi\).
  4. Show that \(\mathrm { f } ^ { - 1 } ( x ) = \arccos \left( \frac { 1 } { x } - 1 \right)\). State the domain of this inverse function, and add a sketch of \(y = \mathrm { f } ^ { - 1 } ( x )\) to a copy of Fig. 8.