OCR MEI C3 (Core Mathematics 3)

Question 1
View details
1 Find \(\int \sqrt [ 3 ] { 2 x - 1 } \mathrm {~d} x\).
Question 2
View details
2 Fig. 8 shows the line \(y = 1\) and the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { ( x - 2 ) ^ { 2 } } { x }\). The curve touches the \(x\)-axis at \(\mathrm { P } ( 2,0 )\) and has another turning point at the point Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6ea594c5-52ba-4467-a098-cb66004b5a38-1_959_1469_748_317} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Show that \(\mathrm { f } ^ { \prime } ( x ) = 1 - \frac { 4 } { x ^ { 2 } }\), and find \(\mathrm { f } ^ { \prime \prime } ( x )\). Hence find the coordinates of Q and, using \(\mathrm { f } ^ { \prime \prime } ( x )\), verify that it is a maximum point.
  2. Verify that the line \(y = 1\) meets the curve \(y = \mathrm { f } ( x )\) at the points with \(x\)-coordinates 1 and 4 . Hence find the exact area of the shaded region enclosed by the line and the curve. The curve \(y = \mathrm { f } ( x )\) is now transformed by a translation with vector \(\binom { - 1 } { - 1 }\). The resulting curve has equation \(y = \mathrm { g } ( x )\).
  3. Show that \(\mathrm { g } ( x ) = \frac { x ^ { 2 } - 3 x } { x + 1 }\).
  4. Without further calculation, write down the value of \(\int _ { 0 } ^ { 3 } \mathrm {~g} ( x ) \mathrm { d } x\), justifying your answer.
Question 3
View details
3 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } ( 1 - \sin 3 x ) \mathrm { d } x\), giving your answer in exact form.
Question 4
View details
4 Fig. 9 shows the curve \(y = x \mathrm { e } ^ { - 2 x }\) together with the straight line \(y = m x\), where \(m\) is a constant, with \(0 < m < 1\). The curve and the line meet at O and P . The dashed line is the tangent at P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6ea594c5-52ba-4467-a098-cb66004b5a38-2_431_977_728_602} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show that the \(x\)-coordinate of P is \(- \frac { 1 } { 2 } \ln m\).
  2. Find, in terms of \(m\), the gradient of the tangent to the curve at P . You are given that OP and this tangent are equally inclined to the \(x\)-axis.
  3. Show that \(m = \mathrm { e } ^ { - 2 }\), and find the exact coordinates of P .
  4. Find the exact area of the shaded region between the line OP and the curve.
Question 5
View details
5 Using a suitable substitution or otherwise, show that \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { \sin 2 x } { 3 + \cos 2 x } \mathrm {~d} x = \frac { 1 } { 2 } \ln 2\).