Edexcel C3 (Core Mathematics 3)

Question 1
View details
  1. (a) Express
$$\frac { x + 4 } { 2 x ^ { 2 } + 3 x + 1 } - \frac { 2 } { 2 x + 1 }$$ as a single fraction in its simplest form.
(b) Hence, find the values of \(x\) such that $$\frac { x + 4 } { 2 x ^ { 2 } + 3 x + 1 } - \frac { 2 } { 2 x + 1 } = \frac { 1 } { 2 } .$$
Question 2
View details
  1. (a) Prove, by counter-example, that the statement
$$\text { "cosec } \theta - \sin \theta > 0 \text { for all values of } \theta \text { in the interval } 0 < \theta < \pi \text { " }$$ is false.
(b) Find the values of \(\theta\) in the interval \(0 < \theta < \pi\) such that $$\operatorname { cosec } \theta - \sin \theta = 2$$ giving your answers to 2 decimal places.
Question 3
View details
3. Solve each equation, giving your answers in exact form.
  1. \(\quad \ln ( 2 x - 3 ) = 1\)
  2. \(3 \mathrm { e } ^ { y } + 5 \mathrm { e } ^ { - y } = 16\)
Question 4
View details
4. Differentiate each of the following with respect to \(x\) and simplify your answers.
  1. \(\quad \ln ( 3 x - 2 )\)
  2. \(\frac { 2 x + 1 } { 1 - x }\)
  3. \(x ^ { \frac { 3 } { 2 } } \mathrm { e } ^ { 2 x }\)
Question 5
View details
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{de511dda-d00f-4881-94c3-9ee643d10f3f-3_529_806_248_408} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve \(y = \mathrm { f } ( x )\) which has a maximum point at ( \(- 3,2\) ) and a minimum point at \(( 2 , - 4 )\).
  1. Showing the coordinates of any stationary points, sketch on separate diagrams the graphs of
    1. \(y = \mathrm { f } ( | x | )\),
    2. \(y = 3 \mathrm { f } ( 2 x )\).
  2. Write down the values of the constants \(a\) and \(b\) such that the curve with equation \(y = a + \mathrm { f } ( x + b )\) has a minimum point at the origin \(O\).
Question 6
View details
6. The function f is defined by $$\mathrm { f } ( x ) \equiv 4 - \ln 3 x , \quad x \in \mathbb { R } , \quad x > 0 .$$
  1. Solve the equation \(\mathrm { f } ( x ) = 0\).
  2. Sketch the curve \(y = \mathrm { f } ( x )\).
  3. Find an expression for the inverse function, \(\mathrm { f } ^ { - 1 } ( x )\). The function \(g\) is defined by $$\mathrm { g } ( x ) \equiv \mathrm { e } ^ { 2 - x } , \quad x \in \mathbb { R }$$
  4. Show that $$\operatorname { fg } ( x ) = x + a - \ln b$$ where \(a\) and \(b\) are integers to be found.
Question 7
View details
7. (a) Express \(4 \sin x + 3 \cos x\) in the form \(R \sin ( x + \alpha )\) where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\).
(b) State the minimum value of \(4 \sin x + 3 \cos x\) and the smallest positive value of \(x\) for which this minimum value occurs.
(c) Solve the equation $$4 \sin 2 \theta + 3 \cos 2 \theta = 2$$ for \(\theta\) in the interval \(0 \leq \theta \leq \pi\), giving your answers to 2 decimal places.
Question 8
View details
8. The curve \(C\) has the equation \(y = \sqrt { x } + \mathrm { e } ^ { 1 - 4 x } , x \geq 0\).
  1. Find an equation for the normal to the curve at the point \(\left( \frac { 1 } { 4 } , \frac { 3 } { 2 } \right)\). The curve \(C\) has a stationary point with \(x\)-coordinate \(\alpha\) where \(0.5 < \alpha < 1\).
  2. Show that \(\alpha\) is a solution of the equation $$x = \frac { 1 } { 4 } [ 1 + \ln ( 8 \sqrt { x } ) ]$$
  3. Use the iteration formula $$x _ { n + 1 } = \frac { 1 } { 4 } \left[ 1 + \ln \left( 8 \sqrt { x _ { n } } \right) \right]$$ with \(x _ { 0 } = 1\) to find \(x _ { 1 } , x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), giving the value of \(x _ { 4 }\) to 3 decimal places.
  4. Show that your value for \(x _ { 4 }\) is the value of \(\alpha\) correct to 3 decimal places.
  5. Another attempt to find \(\alpha\) is made using the iteration formula $$x _ { n + 1 } = \frac { 1 } { 64 } \mathrm { e } ^ { 8 x _ { n } - 2 }$$ with \(x _ { 0 } = 1\). Describe the outcome of this attempt.