OCR MEI C3 (Core Mathematics 3)

Question 2
View details
2
  1. Expand \(\left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right) ^ { 2 }\).
  2. Hence find \(\int \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right) ^ { 2 } \mathrm {~d} x\).
Question 3
View details
3
  1. Sketch the graph of \(y = | 3 x - 6 |\).
  2. Solve the equation \(| 3 x - 6 | = x + 4\) and illustrate your answer on your graph.
    \(4 \quad\) Find \(\int x \sin 3 x \mathrm {~d} x\).
    \(5 \quad\) Make \(x\) the subject of \(t = \ln \sqrt { \frac { 5 } { ( x - 3 ) } }\).
Question 6
View details
6 The function \(\mathrm { f } ( x )\) is defined as \(\mathrm { f } ( x ) = \frac { \ln x } { x }\). The graph of the function is shown in Fig. 6 . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c7998a08-229a-40d2-ba34-b5f264139295-2_369_675_1930_689} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Give the coordinates of the point, P , where the curve crosses the \(x\)-axis.
  2. Use calculus to find the coordinates of the stationary point, Q , and show that it is a maximum.
Question 7
View details
7 An oil slick is circular with radius \(r \mathrm {~km}\) and area \(A \mathrm {~km} ^ { 2 }\). The radius increases with time at a rate given by \(\frac { \mathrm { d } r } { \mathrm {~d} t } = 0.5\), in kilometres per hour.
  1. Show that \(\frac { \mathrm { dA } } { \mathrm { d } t } = \pi r\).
  2. Find the rate of increase of the area of the slick at a time when the radius is 6 km .
Question 8
View details
8 Fig. 8 shows the graph of \(y = x \sqrt { 1 + x }\). The point P on the curve is on the \(x\)-axis. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c7998a08-229a-40d2-ba34-b5f264139295-3_433_800_895_587} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Write down the coordinates of P .
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 3 x + 2 } { 2 \sqrt { 1 + x } }\).
  3. Hence find the coordinates of the turning point on the curve. What can you say about the gradient of the curve at P ?
  4. By using a suitable substitution, show that \(\int _ { - 1 } ^ { 0 } x \sqrt { 1 + x } \mathrm {~d} x = \int _ { 0 } ^ { 1 } \left( u ^ { \frac { 3 } { 2 } } - u ^ { \frac { 1 } { 2 } } \right) \mathrm { d } u\). Evaluate this integral, giving your answer in an exact form.
    What does this value represent?
  5. Use your answer to part (ii) to differentiate \(y = x \sqrt { 1 + x } \sin 2 x\) with respect to \(x\).
    (You need not simplify your result.)
Question 9
View details
9 The functions \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are defined by $$\mathrm { f } ( x ) = x ^ { 2 } , \quad \mathrm {~g} ( x ) = 2 x - 1$$ for all real values of \(x\).
  1. State the ranges of \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\). Explain why \(\mathrm { f } ( x )\) has no inverse.
  2. Find an expression for the inverse function \(\mathrm { g } ^ { - 1 } ( x )\) in terms of \(x\). Sketch the graphs of \(y = \mathrm { g } ( x )\) and \(y = \mathrm { g } ^ { - 1 } ( x )\) on the same axes.
  3. Find expressions for \(\operatorname { gf } ( x )\) and \(\operatorname { fg } ( x )\).
  4. Solve the equation \(\operatorname { gf } ( x ) = \mathrm { fg } ( x )\). Sketch the graphs of \(y = \operatorname { gf } ( x )\) and \(y = \operatorname { fg } ( x )\) on the same axes to illustrate your answer.
  5. Show that the equation \(\mathrm { f } ( x + a ) = \mathrm { g } ^ { 2 } ( x )\) has no solution if \(a > \frac { 1 } { 4 }\).