OCR MEI C3 (Core Mathematics 3) 2013 June

Question 1
View details
1 Fig. 1 shows the graphs of \(y = | x |\) and \(y = a | x + b |\), where \(a\) and \(b\) are constants. The intercepts of \(y = a | x + b |\) with the \(x\)-and \(y\)-axes are \(( - 1,0 )\) and \(\left( 0 , \frac { 1 } { 2 } \right)\) respectively. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{28ce1bcc-e9d5-4ae6-98c0-67b5b8c50bc6-2_624_958_468_539} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure}
  1. Find \(a\) and \(b\).
  2. Find the coordinates of the two points of intersection of the graphs.
Question 2
View details
2
  1. Factorise fully \(n ^ { 3 } - n\).
  2. Hence prove that, if \(n\) is an integer, \(n ^ { 3 } - n\) is divisible by 6 .
Question 3
View details
3 The function \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = 1 - 2 \sin x\) for \(- \frac { 1 } { 2 } \pi \leqslant x \leqslant \frac { 1 } { 2 } \pi\). Fig. 3 shows the curve \(y = \mathrm { f } ( x )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{28ce1bcc-e9d5-4ae6-98c0-67b5b8c50bc6-3_732_807_349_612} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. Write down the range of the function \(\mathrm { f } ( x )\).
  2. Find the inverse function \(\mathrm { f } ^ { - 1 } ( x )\).
  3. Find \(\mathrm { f } ^ { \prime } ( 0 )\). Hence write down the gradient of \(y = \mathrm { f } ^ { - 1 } ( x )\) at the point \(( 1,0 )\).
Question 4
View details
4 Water flows into a bowl at a constant rate of \(10 \mathrm {~cm} ^ { 3 } \mathrm {~s} ^ { - 1 }\) (see Fig. 4). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{28ce1bcc-e9d5-4ae6-98c0-67b5b8c50bc6-3_422_385_1628_815} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} When the depth of water in the bowl is \(h \mathrm {~cm}\), the volume of water is \(V \mathrm {~cm} ^ { 3 }\), where \(V = \pi h ^ { 2 }\). Find the rate at which the depth is increasing at the instant in time when the depth is 5 cm .
Question 5
View details
5 Given that \(y = \ln \left( \sqrt { \frac { 2 x - 1 } { 2 x + 1 } } \right)\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 2 x - 1 } - \frac { 1 } { 2 x + 1 }\).
Question 6
View details
6 Using a suitable substitution or otherwise, show that \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { \sin 2 x } { 3 + \cos 2 x } \mathrm {~d} x = \frac { 1 } { 2 } \ln 2\).
Question 7
View details
7
  1. Show algebraically that the function \(\mathrm { f } ( x ) = \frac { 2 x } { 1 - x ^ { 2 } }\) is odd. Fig. 7 shows the curve \(y = \mathrm { f } ( x )\) for \(0 \leqslant x \leqslant 4\), together with the asymptote \(x = 1\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{28ce1bcc-e9d5-4ae6-98c0-67b5b8c50bc6-4_730_817_431_607} \captionsetup{labelformat=empty} \caption{Fig. 7}
    \end{figure}
  2. Use the copy of Fig. 7 to complete the curve for \(- 4 \leqslant x \leqslant 4\).
Question 8
View details
8 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = ( 1 - x ) \mathrm { e } ^ { 2 x }\), with its turning point P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{28ce1bcc-e9d5-4ae6-98c0-67b5b8c50bc6-5_716_810_404_609} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Write down the coordinates of the intercepts of \(y = \mathrm { f } ( x )\) with the \(x\) - and \(y\)-axes.
  2. Find the exact coordinates of the turning point P .
  3. Show that the exact area of the region enclosed by the curve and the \(x\) - and \(y\)-axes is \(\frac { 1 } { 4 } \left( e ^ { 2 } - 3 \right)\). The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = 3 \mathrm { f } \left( \frac { 1 } { 2 } x \right)\).
  4. Express \(\mathrm { g } ( x )\) in terms of \(x\). Sketch the curve \(y = \mathrm { g } ( x )\) on the copy of Fig. 8, indicating the coordinates of its intercepts with the \(x\) - and \(y\)-axes and of its turning point.
  5. Write down the exact area of the region enclosed by the curve \(y = \mathrm { g } ( x )\) and the \(x\)-and \(y\)-axes.
Question 9
View details
9 Fig. 9 shows the curve with equation \(y ^ { 3 } = \frac { x ^ { 3 } } { 2 x - 1 }\). It has an asymptote \(x = a\) and turning point P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{28ce1bcc-e9d5-4ae6-98c0-67b5b8c50bc6-6_752_867_356_584} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Write down the value of \(a\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 4 x ^ { 3 } - 3 x ^ { 2 } } { 3 y ^ { 2 } ( 2 x - 1 ) ^ { 2 } }\). Hence find the coordinates of the turning point P , giving the \(y\)-coordinate to 3 significant figures.
  3. Show that the substitution \(u = 2 x - 1\) transforms \(\int \frac { x } { \sqrt [ 3 ] { 2 x - 1 } } \mathrm {~d} x\) to \(\frac { 1 } { 4 } \int \left( u ^ { \frac { 2 } { 3 } } + u ^ { - \frac { 1 } { 3 } } \right) \mathrm { d } u\). Hence find the exact area of the region enclosed by the curve \(y ^ { 3 } = \frac { x ^ { 3 } } { 2 x - 1 }\), the \(x\)-axis and the lines \(x = 1\) and \(x = 4.5\).