OCR MEI C3 (Core Mathematics 3) 2007 June

Question 1
View details
1
  1. Differentiate \(\sqrt { 1 + 2 x }\).
  2. Show that the derivative of \(\ln \left( 1 - \mathrm { e } ^ { - x } \right)\) is \(\frac { 1 } { \mathrm { e } ^ { x } - 1 }\).
Question 2
View details
2 Given that \(\mathrm { f } ( x ) = 1 - x\) and \(\mathrm { g } ( x ) = | x |\), write down the composite function \(\mathrm { gf } ( x )\).
On separate diagrams, sketch the graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { gf } ( x )\).
Question 3
View details
3 A curve has equation \(2 y ^ { 2 } + y = 9 x ^ { 2 } + 1\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). Hence find the gradient of the curve at the point \(\mathrm { A } ( 1,2 )\).
  2. Find the coordinates of the points on the curve at which \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\).
Question 4
View details
4 A cup of water is cooling. Its initial temperature is \(100 ^ { \circ } \mathrm { C }\). After 3 minutes, its temperature is \(80 ^ { \circ } \mathrm { C }\).
  1. Given that \(T = 25 + a \mathrm { e } ^ { - k t }\), where \(T\) is the temperature in \({ } ^ { \circ } \mathrm { C } , t\) is the time in minutes and \(a\) and \(k\) are constants, find the values of \(a\) and \(k\).
  2. What is the temperature of the water
    (A) after 5 minutes,
    (B) in the long term?
Question 5
View details
5 Prove that the following statement is false.
For all integers \(n\) greater than or equal to \(1 , n ^ { 2 } + 3 n + 1\) is a prime number.
Question 6
View details
6 Fig. 6 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { 2 } \arctan x\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0ee3d87a-0d9e-4fa5-b8f5-8b28489e65b5-3_378_725_367_669} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find the range of the function \(\mathrm { f } ( x )\), giving your answer in terms of \(\pi\).
  2. Find the inverse function \(\mathrm { f } ^ { - 1 } ( x )\). Find the gradient of the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) at the origin.
  3. Hence write down the gradient of \(y = \frac { 1 } { 2 } \arctan x\) at the origin.
Question 7
View details
7 Fig. 7 shows the curve \(y = \frac { x ^ { 2 } } { 1 + 2 x ^ { 3 } }\). It is undefined at \(x = a\); the line \(x = a\) is a vertical asymptote. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0ee3d87a-0d9e-4fa5-b8f5-8b28489e65b5-3_654_1034_1505_497} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Calculate the value of \(a\), giving your answer correct to 3 significant figures.
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 x - 2 x ^ { 4 } } { \left( 1 + 2 x ^ { 3 } \right) ^ { 2 } }\). Hence determine the coordinates of the turning points of the curve.
  3. Show that the area of the region between the curve and the \(x\)-axis from \(x = 0\) to \(x = 1\) is \(\frac { 1 } { 6 } \ln 3\).
Question 8
View details
8 Fig. 8 shows part of the curve \(y = x \cos 2 x\), together with a point P at which the curve crosses the \(x\)-axis. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0ee3d87a-0d9e-4fa5-b8f5-8b28489e65b5-4_421_965_349_550} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the exact coordinates of P .
  2. Show algebraically that \(x \cos 2 x\) is an odd function, and interpret this result graphically.
  3. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  4. Show that turning points occur on the curve for values of \(x\) which satisfy the equation \(x \tan 2 x = \frac { 1 } { 2 }\).
  5. Find the gradient of the curve at the origin. Show that the second derivative of \(x \cos 2 x\) is zero when \(x = 0\).
  6. Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } x \cos 2 x \mathrm {~d} x\), giving your answer in terms of \(\pi\). Interpret this result graphically.