OCR MEI C3 (Core Mathematics 3) 2011 January

Question 1
View details
1 Given that \(y = \sqrt [ 3 ] { 1 + x ^ { 2 } }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
Question 2
View details
2 Solve the inequality \(| 2 x + 1 | \geqslant 4\).
Question 3
View details
3 The area of a circular stain is growing at a rate of \(1 \mathrm {~mm} ^ { 2 }\) per second. Find the rate of increase of its radius at an instant when its radius is 2 mm .
Question 4
View details
4 Use the triangle in Fig. 4 to prove that \(\sin ^ { 2 } \theta + \cos ^ { 2 } \theta = 1\). For what values of \(\theta\) is this proof valid? \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9857ad89-b315-4cd6-8d8d-26a509ca52a8-2_362_606_906_772} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
Question 5
View details
5
  1. On a single set of axes, sketch the curves \(y = \mathrm { e } ^ { x } - 1\) and \(y = 2 \mathrm { e } ^ { - x }\).
  2. Find the exact coordinates of the point of intersection of these curves.
Question 7
View details
7 Fig. 7 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = 1 + 2 \arctan x , x \in \mathbb { R }\). The scales on the \(x\) - and \(y\)-axes are the same. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9857ad89-b315-4cd6-8d8d-26a509ca52a8-3_859_849_386_648} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the range of f , giving your answer in terms of \(\pi\).
  2. Find \(\mathrm { f } ^ { - 1 } ( x )\), and add a sketch of the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) to the copy of Fig. 7. Section B (36 Marks)
Question 8
View details
8
  1. Use the substitution \(u = 1 + x\) to show that $$\int _ { 0 } ^ { 1 } \frac { x ^ { 3 } } { 1 + x } \mathrm {~d} x = \int _ { a } ^ { b } \left( u ^ { 2 } - 3 u + 3 - \frac { 1 } { u } \right) \mathrm { d } u$$ where \(a\) and \(b\) are to be found.
    Hence evaluate \(\int _ { 0 } ^ { 1 } \frac { x ^ { 3 } } { 1 + x } \mathrm {~d} x\), giving your answer in exact form. Fig. 8 shows the curve \(y = x ^ { 2 } \ln ( 1 + x )\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{9857ad89-b315-4cd6-8d8d-26a509ca52a8-4_830_809_902_667} \captionsetup{labelformat=empty} \caption{Fig. 8}
    \end{figure}
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\). Verify that the origin is a stationary point of the curve.
  3. Using integration by parts, and the result of part (i), find the exact area enclosed by the curve \(y = x ^ { 2 } \ln ( 1 + x )\), the \(x\)-axis and the line \(x = 1\).
Question 9
View details
9 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { \cos ^ { 2 } x } , - \frac { 1 } { 2 } \pi < x < \frac { 1 } { 2 } \pi\), together with its asymptotes \(x = \frac { 1 } { 2 } \pi\) and \(x = - \frac { 1 } { 2 } \pi\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9857ad89-b315-4cd6-8d8d-26a509ca52a8-5_917_1395_413_374} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Use the quotient rule to show that the derivative of \(\frac { \sin x } { \cos x }\) is \(\frac { 1 } { \cos ^ { 2 } x }\).
  2. Find the area bounded by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = \frac { 1 } { 4 } \pi\). The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \frac { 1 } { 2 } \mathrm { f } \left( x + \frac { 1 } { 4 } \pi \right)\).
  3. Verify that the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\) cross at ( 0,1 ).
  4. State a sequence of two transformations such that the curve \(y = \mathrm { f } ( x )\) is mapped to the curve \(y = \mathrm { g } ( x )\). On the copy of Fig. 9, sketch the curve \(y = \mathrm { g } ( x )\), indicating clearly the coordinates of the minimum point and the equations of the asymptotes to the curve.
  5. Use your result from part (ii) to write down the area bounded by the curve \(y = \mathrm { g } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = - \frac { 1 } { 4 } \pi\). RECOGNISING ACHIEVEMENT