1
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6a690aa5-63a7-4569-afa8-0746814ebab4-2_533_375_267_404}
\captionsetup{labelformat=empty}
\caption{Fig. 1}
\end{figure}
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6a690aa5-63a7-4569-afa8-0746814ebab4-2_533_379_267_882}
\captionsetup{labelformat=empty}
\caption{Fig. 2}
\end{figure}
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6a690aa5-63a7-4569-afa8-0746814ebab4-2_531_373_267_1366}
\captionsetup{labelformat=empty}
\caption{Fig. 3}
\end{figure}
Each diagram above shows part of a curve, the equation of which is one of the following:
$$y = \sin ^ { - 1 } x , \quad y = \cos ^ { - 1 } x , \quad y = \tan ^ { - 1 } x , \quad y = \sec x , \quad y = \operatorname { cosec } x , \quad y = \cot x .$$
State which equation corresponds to
- Fig. 1,
- Fig. 2,
- Fig. 3.