6 The functions \(f\) and \(g\) are defined with their respective domains by
$$\begin{array} { l l }
\mathrm { f } ( x ) = \mathrm { e } ^ { 2 x } - 3 , & \text { for all real values of } x
\mathrm {~g} ( x ) = \frac { 1 } { 3 x + 4 } , & \text { for real values of } x , x \neq - \frac { 4 } { 3 }
\end{array}$$
- Find the range of \(f\).
- The inverse of f is \(\mathrm { f } ^ { - 1 }\).
- Find \(\mathrm { f } ^ { - 1 } ( x )\).
- Solve the equation \(\mathrm { f } ^ { - 1 } ( x ) = 0\).
- Find an expression for \(\operatorname { gf } ( x )\).
- Solve the equation \(\mathrm { gf } ( x ) = 1\), giving your answer in an exact form.