AQA C3 (Core Mathematics 3)

Question 2
View details
2 Use Simpson's rule with 5 ordinates ( 4 strips) to find an approximation to $$\int _ { 1 } ^ { 3 } \frac { 1 } { \sqrt { 1 + x ^ { 3 } } } \mathrm {~d} x$$ giving your answer to three significant figures.
Question 5
View details
5 The diagram shows part of the graph of \(y = \mathrm { e } ^ { 2 x } - 9\). The graph cuts the coordinate axes at ( \(0 , a\) ) and ( \(b , 0\) ).
\includegraphics[max width=\textwidth, alt={}, center]{9aac4ee4-2435-4315-a87d-fe9fa8e15665-004_817_908_479_550}
  1. State the value of \(a\), and show that \(b = \ln 3\).
  2. Show that \(y ^ { 2 } = \mathrm { e } ^ { 4 x } - 18 \mathrm { e } ^ { 2 x } + 81\).
  3. The shaded region \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Find the volume of the solid formed, giving your answer in the form \(\pi ( p \ln 3 + q )\), where \(p\) and \(q\) are integers.
  4. Sketch the curve with equation \(y = \left| \mathrm { e } ^ { 2 x } - 9 \right|\) for \(x \geqslant 0\).
Question 6
View details
6 [Figure 1, printed on the insert, is provided for use in this question.]
The curve \(y = x ^ { 3 } + 4 x - 3\) intersects the \(x\)-axis at the point \(A\) where \(x = \alpha\).
  1. Show that \(\alpha\) lies between 0.5 and 1.0.
  2. Show that the equation \(x ^ { 3 } + 4 x - 3 = 0\) can be rearranged into the form \(x = \frac { 3 - x ^ { 3 } } { 4 }\).
    (1 mark)
    1. Use the iteration \(x _ { n + 1 } = \frac { 3 - x _ { n } { } ^ { 3 } } { 4 }\) with \(x _ { 1 } = 0.5\) to find \(x _ { 3 }\), giving your answer to two decimal places.
    2. The sketch on Figure 1 shows parts of the graphs of \(y = \frac { 3 - x ^ { 3 } } { 4 }\) and \(y = x\), and the position of \(x _ { 1 }\). On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of \(x _ { 2 }\) and \(x _ { 3 }\) on the \(x\)-axis.
      (3 marks)
Question 7
View details
7
  1. The sketch shows the graph of \(y = \sin ^ { - 1 } x\).
    \includegraphics[max width=\textwidth, alt={}, center]{9aac4ee4-2435-4315-a87d-fe9fa8e15665-006_819_824_456_591} Write down the coordinates of the points \(P\) and \(Q\), the end-points of the graph.
  2. Sketch the graph of \(y = - \sin ^ { - 1 } ( x - 1 )\).
Question 8
View details
8 The functions \(f\) and \(g\) are defined with their respective domains by $$\begin{array} { l l } \mathrm { f } ( x ) = x ^ { 2 } & \text { for all real values of } x
\mathrm {~g} ( x ) = \frac { 1 } { x + 2 } & \text { for real values of } x , \quad x \neq - 2 \end{array}$$
  1. State the range of f.
    1. Find fg(x).
    2. Solve the equation \(\operatorname { fg } ( x ) = 4\).
    1. Explain why the function f does not have an inverse.
    2. The inverse of g is \(\mathrm { g } ^ { - 1 }\). Find \(\mathrm { g } ^ { - 1 } ( x )\).
Question 9
View details
9
  1. Given that \(y = x ^ { - 2 } \ln x\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 - 2 \ln x } { x ^ { 3 } }\).
  2. Using integration by parts, find \(\int x ^ { - 2 } \ln x \mathrm {~d} x\).
  3. The sketch shows the graph of \(y = x ^ { - 2 } \ln x\).
    \includegraphics[max width=\textwidth, alt={}, center]{9aac4ee4-2435-4315-a87d-fe9fa8e15665-007_593_1034_696_543}
    1. Using the answer to part (a), find, in terms of e, the \(x\)-coordinate of the stationary point \(A\).
    2. The region \(R\) is bounded by the curve, the \(x\)-axis and the line \(x = 5\). Using your answer to part (b), show that the area of \(R\) is $$\frac { 1 } { 5 } ( 4 - \ln 5 )$$
Question 10
View details
10
    1. By writing \(\ln x\) as \(( \ln x ) \times 1\), use integration by parts to find \(\int \ln x \mathrm {~d} x\).
    2. Find \(\int ( \ln x ) ^ { 2 } \mathrm {~d} x\).
  1. Use the substitution \(u = \sqrt { x }\) to find the exact value of $$\int _ { 1 } ^ { 4 } \frac { 1 } { x + \sqrt { x } } \mathrm {~d} x$$ (7 marks)