OCR MEI C2 (Core Mathematics 2)

Question 1
View details
1 Find \(\sum _ { k = 1 } ^ { 5 } \frac { 1 } { 1 + k }\).
Question 2
View details
2 The terms of a sequence are given by $$\begin{aligned} u _ { 1 } & = 192 ,
u _ { n + 1 } & = - \frac { 1 } { 2 } u _ { n } . \end{aligned}$$
  1. Find the third term of this sequence and state what type of sequence it is.
  2. Show that the series \(u _ { 1 } + u _ { 2 } + u _ { 3 } + \ldots\) converges and find its sum to infinity.
Question 3
View details
3 A sequence begins $$\begin{array} { l l l l l l l l l l l l } 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 & 1 & \ldots \end{array}$$ and continues in this pattern.
  1. Find the 48th term of this sequence.
  2. Find the sum of the first 48 terms of this sequence.
Question 4
View details
4 Sequences A, B and C are shown below. They each continue in the pattern established by the given terms.
A:1,2,4,32,\(\ldots\)
B:20,- 10,5,- 2.5,1.25,- 0.625,\(\ldots\)
C:20,5,1,20,5,\(\ldots\)
  1. Which of these sequences is periodic?
  2. Which of these sequences is convergent?
  3. Find, in terms of \(n\), the \(n\)th term of sequence A .
Question 5
View details
5 Find the numerical value of \(\sum _ { k = 2 } ^ { 5 } k ^ { 3 }\).
Question 6
View details
6
  1. Find \(\sum _ { k = 2 } ^ { 5 } 2 ^ { k }\).
  2. Find the value of \(n\) for which \(2 ^ { n } = \frac { 1 } { 64 }\).
  3. Sketch the curve with equation \(y = 2 ^ { x }\).