2 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 18 } { x ^ { 3 } } + 2\). The curve passes through the point \(( 3,6 )\). Find the
equation of the curve. equation of the curve.
3 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 6 x ^ { \frac { 1 } { 2 } } - 5\). Given also that the curve passes through the point (4, 20), find the equation of the curve.
5 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 6 \sqrt { x } - 2\). Given also that the curve passes through the point \(( 9,4 )\), find the equation of the curve.
9 A curve has gradient given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 6 \sqrt { x }\). Find the equation of the curve, given that it passes through the point \(( 9,105 )\).