OCR MEI C2 (Core Mathematics 2)

Question 1
View details
1 Find \(\int 7 x ^ { \frac { 5 } { 2 } } \mathrm {~d} x\).
Question 2
View details
2 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 18 } { x ^ { 3 } } + 2\). The curve passes through the point \(( 3,6 )\). Find the
equation of the curve. equation of the curve.
Question 3
View details
3 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 6 x ^ { \frac { 1 } { 2 } } - 5\). Given also that the curve passes through the point (4, 20), find the equation of the curve.
Question 4
View details
4 Find \(\int _ { 2 } ^ { 5 } \left( 2 x ^ { 3 } + 3 \right) \mathrm { d } x\).
Question 5
View details
5 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 6 \sqrt { x } - 2\). Given also that the curve passes through the point \(( 9,4 )\), find the equation of the curve.
Question 6
View details
6 Find \(\int _ { 2 } ^ { 5 } \left( 1 - \frac { 6 } { x ^ { 3 } } \right) \mathrm { d } x\).
Question 7
View details
7 Find \(\int _ { 1 } ^ { 2 } \left( 12 x ^ { 5 } + 5 \right) \mathrm { d } x\).
Question 9
View details
9 A curve has gradient given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 6 \sqrt { x }\). Find the equation of the curve, given that it passes through the point \(( 9,105 )\).
Question 10
View details
10 Find \(\int _ { 1 } ^ { 2 } \left( \begin{array} { l l } x ^ { 4 } & \frac { 3 } { x ^ { 2 } } + 1 \end{array} \right) \mathrm { d } x\), showing your working.
Question 11
View details
11 Find \(\int 30 x ^ { \frac { 3 } { 2 } } \mathrm {~d} x\).
Question 12
View details
12 Find \(\int \left( x ^ { 5 } + 10 x ^ { \frac { 3 } { 2 } } \right) \mathrm { d } x\).