OCR MEI C2 (Core Mathematics 2)

Question 1
View details
1 The point \(\mathrm { R } ( 6 , - 3 )\) is on the curve \(y = \mathrm { f } ( x )\).
  1. Find the coordinates of the image of R when the curve is transformed to \(y = \frac { 1 } { 2 } \mathrm { f } ( x )\).
  2. Find the coordinates of the image of R when the curve is transformed to \(y = \mathrm { f } ( 3 x )\).
Question 2
View details
2 Fig. 8 shows the graph of \(y = \mathrm { g } ( x )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{669be128-491c-4152-8f3a-e37a34dd9383-1_800_1401_781_385} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure} Draw the graph of
  1. \(y = \mathrm { g } ( 2 x )\),
  2. \(y = 3 \mathrm {~g} ( x )\).
Question 3
View details
3 The point \(\mathrm { P } ( 6,3 )\) lies on the curve \(y = \mathrm { f } ( x )\). State the coordinates of the image of P after the transformation which maps \(y = \mathrm { f } ( x )\) onto
  1. \(y = 3 \mathrm { f } ( x )\),
  2. \(y = \mathrm { f } ( 4 x )\).
Question 4
View details
4 In this question, \(\mathrm { f } ( x ) = x ^ { 2 } - 5 x\). Fig. 4 shows a sketch of the graph of \(y = \mathrm { f } ( x )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{669be128-491c-4152-8f3a-e37a34dd9383-2_795_898_824_654} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} On separate diagrams, sketch the curves \(y = \mathrm { f } ( 2 x )\) and \(y = 3 \mathrm { f } ( x )\), labelling the coordinates of their intersections with the axes and their turning points.
Question 5
View details
5 State the transformation which maps the graph of \(y = x ^ { 2 } + 5\) onto the graph of \(y = 3 x ^ { 2 } + 15\).
Question 6
View details
6 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{669be128-491c-4152-8f3a-e37a34dd9383-3_819_1370_271_383} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure} Fig. 3 shows sketches of three graphs, A, B and C. The equation of graph A is \(y = \mathrm { f } ( x )\). State the equation of
  1. graph B ,
  2. graph C .
Question 7
View details
7
  1. Solve the equation \(\cos x = 0.4\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
  2. Describe the transformation which maps the graph of \(y = \cos x\) onto the graph of \(y = \cos 2 x\).
Question 8
View details
8
  1. The point \(\mathrm { P } ( 4 , - 2 )\) lies on the curve \(y = \mathrm { f } ( x )\). Find the coordinates of the image of P when the curve is transformed to \(y = \mathrm { f } ( 5 x )\).
  2. Describe fully a single transformation which maps the curve \(y = \sin x ^ { \circ }\) onto the curve \(y = \sin ( x - 90 ) ^ { \circ }\).
Question 9
View details
9 Figs. 5.1 and 5.2 show the graph of \(y = \sin x\) for values of \(x\) from \(0 ^ { \circ }\) to \(360 ^ { \circ }\) and two transformations of this graph. State the equation of each graph after it has been transformed.
  1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{669be128-491c-4152-8f3a-e37a34dd9383-4_511_941_828_586} \captionsetup{labelformat=empty} \caption{Fig. 5.1}
    \end{figure}
  2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{669be128-491c-4152-8f3a-e37a34dd9383-4_517_937_1508_584} \captionsetup{labelformat=empty} \caption{Fig. 5.2}
    \end{figure}
Question 10
View details
10 The curve \(y = \mathrm { f } ( x )\) has a minimum point at \(( 3,5 )\).
State the coordinates of the corresponding minimum point on the graph of
  1. \(y = 3 \mathrm { f } ( x )\),
  2. \(y = \mathrm { f } ( 2 x )\).
Question 11
View details
11 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{669be128-491c-4152-8f3a-e37a34dd9383-5_546_989_828_596} \captionsetup{labelformat=empty} \caption{Fig. 5}
\end{figure} Fig. 5 shows a sketch of the graph of \(y = \mathrm { f } ( x )\). On separate diagrams, sketch the graphs of the following, showing clearly the coordinates of the points corresponding to \(\mathrm { P } , \mathrm { Q }\) and R .
  1. \(y = \mathrm { f } ( 2 x )\)
  2. \(y = \frac { 1 } { 4 } \mathrm { f } ( x )\)
Question 12
View details
  1. \(y = \mathrm { f } ( x - 2 )\),
  2. \(y = 3 \mathrm { f } ( x )\).
Question 13
View details
13 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{669be128-491c-4152-8f3a-e37a34dd9383-7_618_867_267_679} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Fig. 4 shows a sketch of the graph of \(y = \mathrm { f } ( x )\). On separate diagrams, sketch the graphs of the following, showing clearly the coordinates of the points corresponding to \(\mathrm { A } , \mathrm { B }\) and C .
  1. \(y = 2 \mathrm { f } ( x )\)
  2. \(y = \mathrm { f } ( x + 3 )\)
Question 14
View details
14
  1. On the same axes, sketch the graphs of \(y = \cos x\) and \(y = \cos 2 x\) for values of \(x\) from 0 to \(2 \pi\).
  2. Describe the transformation which maps the graph of \(y = \cos x\) onto the graph of \(y = 3 \cos x\).