OCR C2 (Core Mathematics 2)

Question 1
View details
  1. Giving your answers in terms of \(\pi\), solve the equation
$$3 \tan ^ { 2 } \theta - 1 = 0 ,$$ for \(\theta\) in the interval \(- \pi \leq \theta \leq \pi\).
Question 2
View details
2. Given that \(p = \log _ { 2 } 3\) and \(q = \log _ { 2 } 5\), find expressions in terms of \(p\) and \(q\) for
  1. \(\quad \log _ { 2 } 45\),
  2. \(\log _ { 2 } 0.3\)
Question 3
View details
3. For the binomial expansion in ascending powers of \(x\) of \(\left( 1 + \frac { 1 } { 4 } x \right) ^ { n }\), where \(n\) is an integer and \(n \geq 2\),
  1. find and simplify the first three terms,
  2. find the value of \(n\) for which the coefficient of \(x\) is equal to the coefficient of \(x ^ { 2 }\).
Question 4
View details
4.
\includegraphics[max width=\textwidth, alt={}, center]{30d4e6e5-8235-44b0-ad8e-c4c0b313677f-1_572_803_1336_461} The diagram shows the curves with equations \(y = 7 - 2 x - 3 x ^ { 2 }\) and \(y = \frac { 2 } { x }\).
The two curves intersect at the points \(P , Q\) and \(R\).
  1. Show that the \(x\)-coordinates of \(P , Q\) and \(R\) satisfy the equation $$3 x ^ { 3 } + 2 x ^ { 2 } - 7 x + 2 = 0$$ Given that \(P\) has coordinates \(( - 2 , - 1 )\),
  2. find the coordinates of \(Q\) and \(R\).
Question 5
View details
5. The curve \(y = \mathrm { f } ( x )\) passes through the point \(P ( - 1,3 )\) and is such that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 4 } { x ^ { 3 } } , \quad x \neq 0$$
  1. Find \(\mathrm { f } ( x )\).
  2. Show that the area of the finite region bounded by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis and the lines \(x = 1\) and \(x = 4\) is \(4 \frac { 1 } { 2 }\).
Question 6
View details
6.
\includegraphics[max width=\textwidth, alt={}, center]{30d4e6e5-8235-44b0-ad8e-c4c0b313677f-2_577_970_799_360} The diagram shows triangle \(A B C\) in which \(A C = 14 \mathrm {~cm} , B C = 8 \mathrm {~cm}\) and \(\angle A B C = 1.7\) radians.
  1. Find the size of \(\angle A C B\) in radians. The point \(D\) lies on \(A C\) such that \(B D\) is an arc of a circle, centre \(C\).
  2. Find the perimeter of the shaded region bounded by the arc \(B D\) and the straight lines \(A B\) and \(A D\).
Question 7
View details
7. (a) Given that \(y = 3 ^ { x }\), find expressions in terms of \(y\) for
  1. \(3 ^ { x + 1 }\),
  2. \(3 ^ { 2 x - 1 }\).
    (b) Hence, or otherwise, solve the equation $$3 ^ { x + 1 } - 3 ^ { 2 x - 1 } = 6$$
Question 8
View details
  1. (i) Given that
$$\int _ { 1 } ^ { 3 } \left( x ^ { 2 } - 2 x + k \right) d x = 8 \frac { 2 } { 3 }$$ find the value of the constant \(k\).
(ii) Evaluate $$\int _ { 2 } ^ { \infty } \frac { 6 } { x ^ { \frac { 5 } { 2 } } } \mathrm {~d} x$$ giving your answer in its simplest form.
Question 9
View details
9. The second and fifth terms of a geometric series are - 48 and 6 respectively.
  1. Find the first term and the common ratio of the series.
  2. Find the sum to infinity of the series.
  3. Show that the difference between the sum of the first \(n\) terms of the series and its sum to infinity is given by \(2 ^ { 6 - n }\).