10 Use logarithms to solve the equation \(3 ^ { x + 1 } = 5 ^ { 2 x }\). Give your answer correct to 3 decimal places.
Section B (36 marks)
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{aded99ef-873e-42fb-ade5-f6f385e7e549-4_876_812_338_625}
\captionsetup{labelformat=empty}
\caption{Fig. 11}
\end{figure}
Fig. 11 shows a sketch of the curve with equation \(y = x - \frac { 4 } { x ^ { 2 } }\).
- Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - \frac { 24 } { x ^ { 4 } }\).
- Hence find the coordinates of the stationary point on the curve. Verify that the stationary point is a maximum.
- Find the equation of the normal to the curve when \(x = - 1\). Give your answer in the form \(a x + b y + c = 0\).