OCR MEI C2 (Core Mathematics 2) 2005 June

Question 1
View details
1 Differentiate \(x + \sqrt { x ^ { 3 } }\).
Question 2
View details
2 The \(n\)th term of an arithmetic progression is \(6 + 5 n\). Find the sum of the first 20 terms.
Question 3
View details
3 Given that \(\sin \theta = \frac { \sqrt { 3 } } { 4 }\), find in surd form the possible values of \(\cos \theta\).
Question 4
View details
4 A curve has equation \(y = x + \frac { 1 } { x }\).
Use calculus to show that the curve has a turning point at \(x = 1\).
Show also that this point is a minimum.
Question 5
View details
5
  1. Write down the value of \(\log _ { 5 } 5\).
  2. Find \(\log _ { 3 } \left( \frac { 1 } { 9 } \right)\).
  3. Express \(\log _ { a } x + \log _ { a } \left( x ^ { 5 } \right)\) as a multiple of \(\log _ { a } x\).
Question 6
View details
6 Sketch the graph of \(y = 2 ^ { x }\).
Solve the equation \(2 ^ { x } = 50\), giving your answer correct to 2 decimal places.
Question 7
View details
7 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 6 } { x ^ { 3 } }\). The curve passes through \(( 1,4 )\).
Find the equation of the curve.
Question 8
View details
8
  1. Solve the equation \(\cos x = 0.4\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
  2. Describe the transformation which maps the graph of \(y = \cos x\) onto the graph of \(y = \cos 2 x\).
Question 9 4 marks
View details
9 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{faeaf2aa-ed4e-4926-b402-40c4c9aad479-3_535_790_450_630} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure} Fig. 9 shows a sketch of the graph of \(y = x ^ { 3 } - 10 x ^ { 2 } + 12 x + 72\).
  1. Write down \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Find the equation of the tangent to the curve at the point on the curve where \(x = 2\).
  3. Show that the curve crosses the \(x\)-axis at \(x = - 2\). Show also that the curve touches the \(x\)-axis at \(x = 6\).
  4. Find the area of the finite region bounded by the curve and the \(x\)-axis, shown shaded in Fig. 9 . [4]
Question 10
View details
10 Arrowline Enterprises is considering two possible logos: \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{faeaf2aa-ed4e-4926-b402-40c4c9aad479-4_1123_1676_356_230} \captionsetup{labelformat=empty} \caption{Fig. 10.1}
\end{figure} Fig. 10.2
  1. Fig. 10.1 shows the first logo ABCD . It is symmetrical about AC . Find the length of AB and hence find the area of this logo.
  2. Fig. 10.2 shows a circle with centre O and radius 12.6 cm . ST and RT are tangents to the circle and angle SOR is 1.82 radians. The shaded region shows the second logo. Show that \(\mathrm { ST } = 16.2 \mathrm {~cm}\) to 3 significant figures.
    Find the area and perimeter of this logo.
Question 11
View details
11 There is a flowerhead at the end of each stem of an oleander plant. The next year, each flowerhead is replaced by three stems and flowerheads, as shown in Fig. 11. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{faeaf2aa-ed4e-4926-b402-40c4c9aad479-5_501_1102_431_504} \captionsetup{labelformat=empty} \caption{Fig. 11}
\end{figure}
  1. How many flowerheads are there in year 5?
  2. How many flowerheads are there in year \(n\) ?
  3. As shown in Fig. 11, the total number of stems in year 2 is 4, (that is, 1 old one and 3 new ones). Similarly, the total number of stems in year 3 is 13 , (that is, \(1 + 3 + 9\) ). Show that the total number of stems in year \(n\) is given by \(\frac { 3 ^ { n } - 1 } { 2 }\).
  4. Kitty's oleander has a total of 364 stems. Find
    (A) its age,
    (B) how many flowerheads it has.
  5. Abdul's oleander has over 900 flowerheads. Show that its age, \(y\) years, satisfies the inequality \(y > \frac { \log _ { 10 } 900 } { \log _ { 10 } 3 } + 1\).
    Find the smallest integer value of \(y\) for which this is true.