7
7
\end{tabular} &
\hline
&
\hline
\multicolumn{2}{|c|}{}
\hline
\multicolumn{2}{|c|}{}
\hline
& \multirow{2}{*}{}
\hline
\multicolumn{2}{|c|}{}
\hline
\multicolumn{2}{|c|}{}
\hline
\multicolumn{2}{|c|}{}
\hline
&
\hline
&
\hline
&
\hline
&
\hline
&
\hline
&
\hline
Total &
\hline
\end{tabular}
\end{center}
- A circle \(C\) has equation
$$x ^ { 2 } + y ^ { 2 } - 10 x + 6 y - 15 = 0 .$$
- Find the coordinates of the centre of \(C\).
- Find the radius of \(C\).
2. Express \(\frac { y + 3 } { ( y + 1 ) ( y + 2 ) } - \frac { y + 1 } { ( y + 2 ) ( y + 3 ) }\) as a single fraction in its simplest form.
3. Given that \(2 \sin 2 \theta = \cos 2 \theta\), - show that \(\tan 2 \theta = 0.5\).
- Hence find the values of \(\theta\), to one decimal place, in the interval \(0 \leq \theta < 360\) for which \(2 \sin 2 \theta ^ { \circ } = \cos 2 \theta ^ { \circ }\).
4. \(\mathrm { f } ( x ) = x ^ { 3 } - x ^ { 2 } - 7 x + c\), where \(c\) is a constant.
Given that \(\mathrm { f } ( 4 ) = 0\), - find the value of \(c\),
- factorise \(\mathrm { f } ( x )\) as the product of a linear factor and a quadratic factor.
(c Hence show that, apart from \(x = 4\), there are no real values of \(x\) for which \(\mathrm { f } ( x ) = 0\).
5.
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 1}
\includegraphics[alt={},max width=\textwidth]{13c2bf9f-f87a-420c-8cdc-9deb688112ae-3_538_618_283_749}
\end{figure}
Figure 1 shows the sector \(O A B\) of a circle of radius \(r \mathrm {~cm}\). The area of the sector is \(15 \mathrm {~cm} ^ { 2 }\) and \(\angle A O B = 1.5\) radians. - Prove that \(r = 2 \sqrt { } 5\).
- Find, in cm , the perimeter of the sector \(O A B\).
The segment \(R\), shaded in Fig 1, is enclosed by the arc \(A B\) and the straight line \(A B\).
- Calculate, to 3 decimal places, the area of \(R\).
6. The third and fourth terms of a geometric series are 6.4 and 5.12 respectively.
Find - the common ratio of the series,
- the first term of the series,
- the sum to infinity of the series.
- Calculate the difference between the sum to infinity of the series and the sum of the first 25 terms of the series.
7.
$$\mathrm { f } ( x ) = 5 \sin 3 x ^ { \circ } , \quad 0 \leq x \leq 180 .$$ - Sketch the graph of \(\mathrm { f } ( x )\), indicating the value of \(x\) at each point where the graph intersects the \(x\)-axis
- Write down the coordinates of all the maximum and minimum points of \(\mathrm { f } ( x )\).
- Calculate the values of \(x\) for which \(\mathrm { f } ( x ) = 2.5\)