AQA C2 (Core Mathematics 2) 2007 January

Question 1
View details
1 The diagram shows a sector \(O A B\) of a circle with centre \(O\). The radius of the circle is 6 cm and the angle \(A O B\) is 1.2 radians.
  1. Find the area of the sector \(O A B\).
  2. Find the perimeter of the sector \(O A B\).
Question 2
View details
2 Use the trapezium rule with four ordinates (three strips) to find an approximate value for $$\int _ { 0 } ^ { 3 } \sqrt { 2 ^ { x } } \mathrm {~d} x$$ giving your answer to three decimal places.
Question 3
View details
3
  1. Write down the values of \(p , q\) and \(r\) given that:
    1. \(64 = 8 ^ { p }\);
    2. \(\frac { 1 } { 64 } = 8 ^ { q }\);
    3. \(\sqrt { 8 } = 8 ^ { r }\).
  2. Find the value of \(x\) for which $$\frac { 8 ^ { x } } { \sqrt { 8 } } = \frac { 1 } { 64 }$$
Question 4
View details
4 The triangle \(A B C\), shown in the diagram, is such that \(B C = 6 \mathrm {~cm} , A C = 5 \mathrm {~cm}\) and \(A B = 4 \mathrm {~cm}\). The angle \(B A C\) is \(\theta\).
\includegraphics[max width=\textwidth, alt={}, center]{c16d94a6-52f2-4bf3-acee-0b227ae55a1a-3_442_652_452_678}
  1. Use the cosine rule to show that \(\cos \theta = \frac { 1 } { 8 }\).
  2. Hence use a trigonometrical identity to show that \(\sin \theta = \frac { 3 \sqrt { 7 } } { 8 }\).
  3. Hence find the area of the triangle \(A B C\).
Question 5
View details
5 The second term of a geometric series is 48 and the fourth term is 3 .
  1. Show that one possible value for the common ratio, \(r\), of the series is \(- \frac { 1 } { 4 }\) and state the other value.
  2. In the case when \(r = - \frac { 1 } { 4 }\), find:
    1. the first term;
    2. the sum to infinity of the series.
Question 6
View details
6 A curve \(C\) is defined for \(x > 0\) by the equation \(y = x + 1 + \frac { 4 } { x ^ { 2 } }\) and is sketched below.
\includegraphics[max width=\textwidth, alt={}, center]{c16d94a6-52f2-4bf3-acee-0b227ae55a1a-4_545_784_420_628}
    1. Given that \(y = x + 1 + \frac { 4 } { x ^ { 2 } }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
    2. The curve \(C\) has a minimum point \(M\). Find the coordinates of \(M\).
    3. Find an equation of the normal to \(C\) at the point ( 1,6 ).
    1. Find \(\int \left( x + 1 + \frac { 4 } { x ^ { 2 } } \right) \mathrm { d } x\).
    2. Hence find the area of the region bounded by the curve \(C\), the lines \(x = 1\) and \(x = 4\) and the \(x\)-axis.
Question 7
View details
7
  1. The first four terms of the binomial expansion of \(( 1 + 2 x ) ^ { 8 }\) in ascending powers of \(x\) are \(1 + a x + b x ^ { 2 } + c x ^ { 3 }\). Find the values of the integers \(a , b\) and \(c\).
  2. Hence find the coefficient of \(x ^ { 3 }\) in the expansion of \(\left( 1 + \frac { 1 } { 2 } x \right) ( 1 + 2 x ) ^ { 8 }\).
Question 8
View details
8
  1. Solve the equation \(\cos x = 0.3\) in the interval \(0 \leqslant x \leqslant 2 \pi\), giving your answers in radians to three significant figures.
  2. The diagram shows the graph of \(y = \cos x\) for \(0 \leqslant x \leqslant 2 \pi\) and the line \(y = k\).
    \includegraphics[max width=\textwidth, alt={}, center]{c16d94a6-52f2-4bf3-acee-0b227ae55a1a-5_524_805_559_648} The line \(y = k\) intersects the curve \(y = \cos x , 0 \leqslant x \leqslant 2 \pi\), at the points \(P\) and \(Q\). The point \(M\) is the minimum point of the curve.
    1. Write down the coordinates of the point \(M\).
    2. The \(x\)-coordinate of \(P\) is \(\alpha\). Write down the \(x\)-coordinate of \(Q\) in terms of \(\pi\) and \(\alpha\).
  3. Describe the geometrical transformation that maps the graph of \(y = \cos x\) onto the graph of \(y = \cos 2 x\).
  4. Solve the equation \(\cos 2 x = \cos \frac { 4 \pi } { 5 }\) in the interval \(0 \leqslant x \leqslant 2 \pi\), giving the values of \(x\) in terms of \(\pi\).
    (4 marks)
Question 9
View details
9
  1. Solve the equation \(3 \log _ { a } x = \log _ { a } 8\).
  2. Show that $$3 \log _ { a } 6 - \log _ { a } 8 = \log _ { a } 27$$
    1. The point \(P ( 3 , p )\) lies on the curve \(y = 3 \log _ { 10 } x - \log _ { 10 } 8\). Show that \(p = \log _ { 10 } \left( \frac { 27 } { 8 } \right)\).
    2. The point \(Q ( 6 , q )\) also lies on the curve \(y = 3 \log _ { 10 } x - \log _ { 10 } 8\). Show that the gradient of the line \(P Q\) is \(\log _ { 10 } 2\).