OCR MEI C1 (Core Mathematics 1)

Question 1
View details
1 You are given that \(\mathrm { f } ( x ) = ( x + 3 ) ( x - 2 ) ( x - 5 )\).
  1. Sketch the curve \(y = \mathrm { f } ( x )\).
  2. Show that \(\mathrm { f } ( x )\) may be written as \(x ^ { 3 } - 4 x ^ { 2 } - 11 x + 30\).
  3. Describe fully the transformation that maps the graph of \(y = \mathrm { f } ( x )\) onto the graph of \(y = \mathrm { g } ( x )\), where \(\mathrm { g } ( x ) = x ^ { 3 } - 4 x ^ { 2 } - 11 x - 6\).
  4. Show that \(\mathrm { g } ( - 1 ) = 0\). Hence factorise \(\mathrm { g } ( x )\) completely.
Question 2
View details
2 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a94593ca-d84d-4747-ac19-b05389e85b3c-1_781_1462_1118_342} \captionsetup{labelformat=empty} \caption{Fig. 12}
\end{figure} Fig. 12 shows the graph of a cubic curve. It intersects the axes at \(( - 5,0 ) , ( - 2,0 ) , ( 1.5,0 )\) and \(( 0 , - 30 )\).
  1. Use the intersections with both axes to express the equation of the curve in a factorised form.
  2. Hence show that the equation of the curve may be written as \(y = 2 x ^ { 3 } + 11 x ^ { 2 } - x - 30\).
  3. Draw the line \(y = 5 x + 10\) accurately on the graph. The curve and this line intersect at ( \(- 2,0\) ); find graphically the \(x\)-coordinates of the other points of intersection.
  4. Show algebraically that the \(x\)-coordinates of the other points of intersection satisfy the equation $$2 x ^ { 2 } + 7 x - 20 = 0$$ Hence find the exact values of the \(x\)-coordinates of the other points of intersection.
Question 3
View details
3 You are given that \(\mathrm { f } ( x ) = ( 2 x - 3 ) ( x + 2 ) ( x + 4 )\).
  1. Sketch the graph of \(y = \mathrm { f } ( x )\).
  2. State the roots of \(\mathrm { f } ( x - 2 ) = 0\).
  3. You are also given that \(\mathrm { g } ( x ) = \mathrm { f } ( x ) + 15\).
    (A) Show that \(\mathrm { g } ( x ) = 2 x ^ { 3 } + 9 x ^ { 2 } - 2 x - 9\).
    (B) Show that \(\mathrm { g } ( 1 ) = 0\) and hence factorise \(\mathrm { g } ( x )\) completely.
Question 4
View details
4 You are given that \(\mathrm { f } ( x ) = ( x + 2 ) ^ { 2 } ( x - 3 )\).
  1. Sketch the graph of \(y = \mathrm { f } ( x )\).
  2. State the values of \(x\) which satisfy \(\mathrm { f } ( x + 3 ) = 0\).
Question 5
View details
5 A cubic curve has equation \(y = \mathrm { f } ( x )\). The curve crosses the \(x\)-axis where \(x = - , \frac { 1 } { 2 }\) and 5 .
  1. Write down three linear factors of \(\mathrm { f } ( x )\). Hence find the equation of the curve in the form \(y = 2 x ^ { 3 } + a x ^ { 2 } + b x + c\).
  2. Sketch the graph of \(y = \mathrm { f } ( x )\).
  3. The curve \(y = \mathrm { f } ( x )\) is translated by \(\binom { 0 } { - 8 }\). State the coordinates of the point where the translated curve intersects the \(y\)-axis.
  4. The curve \(y = \mathrm { f } ( x )\) is translated by \(\binom { 3 } { 0 }\) to give the curve \(y = \mathrm { g } ( x )\). Find an expression in factorised form for \(\mathrm { g } ( x )\) and state the coordinates of the point where the curve \(y = \mathrm { g } ( x )\) intersects the \(y\)-axis.