OCR MEI C1 (Core Mathematics 1)

Question 1
View details
1 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{01569a16-66ba-422e-a74d-6f9430dd245b-1_520_1122_357_551} \captionsetup{labelformat=empty} \caption{Fig. 11}
\end{figure} Fig. 11 shows the line through the points \(\mathrm { A } ( - 1,3 )\) and \(\mathrm { B } ( 5,1 )\).
  1. Find the equation of the line through \(\mathbf { A }\) and \(\mathbf { B }\).
  2. Show that the area of the triangle bounded by the axes and the line through A and B is \(\frac { 32 } { 3 }\) square units.
  3. Show that the equation of the perpendicular bisector of AB is \(y = 3 x - 4\).
  4. A circle passing through A and B has its centre on the line \(x = 3\). Find the centre of the circle and hence find the radius and equation of the circle.
Question 2
View details
2
  1. Find the coordinates of the point where the line \(5 x + 2 y = 20\) intersects the \(x\)-axis.
  2. Find the coordinates of the point of intersection of the lines \(5 x + 2 y = 20\) and \(y = 5 - x\).
Question 3
View details
3 Prove that the line \(y = 3 x - 10\) does not intersect the curve \(y = x ^ { 2 } - 5 x + 7\).
Question 4
View details
4 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{01569a16-66ba-422e-a74d-6f9430dd245b-2_592_782_322_730} \captionsetup{labelformat=empty} \caption{Fig. 10}
\end{figure} Fig. 10 shows a trapezium ABCD . The coordinates of its vertices are \(\mathrm { A } ( - 2 , - 1 ) , \mathrm { B } ( 6,3 ) , \mathrm { C } ( 3,5 )\) and \(\mathrm { D } ( - 1,3 )\).
  1. Verify that the lines AB and DC are parallel.
  2. Prove that the trapezium is not isosceles.
  3. The diagonals of the trapezium meet at M . Find the exact coordinates of M .
  4. Show that neither diagonal of the trapezium bisects the other.
Question 5
View details
5 A line has gradient - 4 and passes through the point (2,6). Find the coordinates of its points of intersection with the axes. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{01569a16-66ba-422e-a74d-6f9430dd245b-3_433_835_353_715} \captionsetup{labelformat=empty} \caption{Fig. 11}
\end{figure} Fig. 11 shows the line joining the points \(\mathrm { A } ( 0,3 )\) and \(\mathrm { B } ( 6,1 )\).
  1. Find the equation of the line perpendicular to AB that passes through the origin, O .
  2. Find the coordinates of the point where this perpendicular meets AB .
  3. Show that the perpendicular distance of AB from the origin is \(\frac { 9 \sqrt { 10 } } { 10 }\).
  4. Find the length of AB , expressing your answer in the form \(a \sqrt { 10 }\).
  5. Find the area of triangle OAB .