OCR MEI C1 (Core Mathematics 1)

Question 3
View details
3 The curve with equation \(y = \frac { 1 } { 5 } x ( 10 - x )\) is used to model the arch of a bridge over a road, where \(x\) and \(y\) are distances in metres, with the origin as shown in Fig. 12.1. The \(x\)-axis represents the road surface. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{fed65420-9ef9-41d6-a58f-3b0f801d6225-3_520_873_478_675} \captionsetup{labelformat=empty} \caption{Fig. 12.1}
\end{figure}
  1. State the value of \(x\) at A , where the arch meets the road.
  2. Using symmetry, or otherwise, state the value of \(x\) at the maximum point B of the graph. Hence find the height of the arch.
  3. Fig. 12.2 shows a lorry which is 4 m high and 3 m wide, with its cross-section modelled as a rectangle. Find the value of \(d\) when the lorry is in the centre of the road. Hence show that the lorry can pass through this arch. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{fed65420-9ef9-41d6-a58f-3b0f801d6225-3_528_870_1558_717} \captionsetup{labelformat=empty} \caption{Fig. 12.2}
    \end{figure}
  4. Another lorry, also modelled as having a rectangular cross-section, has height 4.5 m and just touches the arch when it is in the centre of the road. Find the width of this lorry, giving your answer in surd form.
Question 4
View details
4 A circle has equation \(( x - 5 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 20\).
  1. State the coordinates of the centre and the radius of this circle.
  2. State, with a reason, whether or not this circle intersects the \(y\)-axis.
  3. Find the equation of the line parallel to the line \(y = 2 x\) that passes through the centre of the circle.
  4. Show that the line \(y = 2 x + 2\) is a tangent to the circle. State the coordinates of the point of contact.