Sketch the curve \(y = \frac { 2 } { x ^ { 2 } }\).
The curve \(y = \frac { 2 } { x ^ { 2 } }\) is translated by 5 units in the negative \(x\)-direction. Find the equation of the curve after it has been translated.
Describe a transformation that transforms the curve \(y = \frac { 2 } { x ^ { 2 } }\) to the curve \(y = \frac { 1 } { x ^ { 2 } }\).
\(( 2 x - 4 ) ( x - 3 ) \leqslant 12\).
\(8 \quad A\) is the point \(( - 2,6 )\) and \(B\) is the point \(( 3 , - 8 )\). The line \(l\) is perpendicular to the line \(x - 3 y + 15 = 0\) and passes through the mid-point of \(A B\). Find the equation of \(l\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.