4 The diagram shows a solid cuboid with sides of lengths \(x \mathrm {~cm} , 3 x \mathrm {~cm}\) and \(y \mathrm {~cm}\).
\includegraphics[max width=\textwidth, alt={}, center]{dbc25177-4a28-480f-93d5-41acb2a2d28c-3_349_472_376_769}
The total surface area of the cuboid is \(32 \mathrm {~cm} ^ { 2 }\).
- Show that \(3 x ^ { 2 } + 4 x y = 16\).
- Hence show that the volume, \(V \mathrm {~cm} ^ { 3 }\), of the cuboid is given by
$$V = 12 x - \frac { 9 x ^ { 3 } } { 4 }$$
- Find \(\frac { \mathrm { d } V } { \mathrm {~d} x }\).
- Verify that a stationary value of \(V\) occurs when \(x = \frac { 4 } { 3 }\).
- Find \(\frac { \mathrm { d } ^ { 2 } V } { \mathrm {~d} x ^ { 2 } }\) and hence determine whether \(V\) has a maximum value or a minimum value when \(x = \frac { 4 } { 3 }\).