6. The continuous random variable \(X\) has probability density function
$$f ( x ) = \left\{ \begin{array} { c c }
\frac { 1 + x } { k } , & 1 \leqslant x \leqslant 4
0 , & \text { otherwise }
\end{array} \right.$$
- Show that \(k = \frac { 21 } { 2 }\).
- Specify fully the cumulative distribution function of \(X\).
- Calculate \(\mathrm { E } ( X )\).
- Find the value of the median.
- Write down the mode.
- Explain why the distribution is negatively skewed.