6. A continuous random variable \(X\) has probability density function \(\mathrm { f } ( x )\) where
$$f ( x ) = \begin{cases} k \left( 4 x - x ^ { 3 } \right) , & 0 \leqslant x \leqslant 2
0 , & \text { otherwise } \end{cases}$$
where \(k\) is a positive integer.
- Show that \(k = \frac { 1 } { 4 }\).
Find
- \(\mathrm { E } ( X )\),
- the mode of \(X\),
- the median of \(X\).
- Comment on the skewness of the distribution.
- Sketch f(x).