Edexcel S2 (Statistics 2) 2005 June

Question 1
View details
  1. It is estimated that \(4 \%\) of people have green eyes. In a random sample of size \(n\), the expected number of people with green eyes is 5 .
    1. Calculate the value of \(n\).
    The expected number of people with green eyes in a second random sample is 3 .
  2. Find the standard deviation of the number of people with green eyes in this second sample. expected number of people with green eyes is 5 .
  3. Calculate the value of \(n\) - The expected number of people with green eyes in a second random sample is 3 .
  4. sample. C) T. " D
Question 2
View details
2. The continuous random variable \(X\) is uniformly distributed over the interval \([ 2,6 ]\).
  1. Write down the probability density function \(\mathrm { f } ( x )\). Find
  2. \(\mathrm { E } ( X )\),
  3. \(\operatorname { Var } ( X )\),
  4. the cumulative distribution function of \(X\), for all \(x\),
  5. \(\mathrm { P } ( 2.3 < X < 3.4 )\).
Question 3
View details
3. The random variable \(X\) is the number of misprints per page in the first draft of a novel.
  1. State two conditions under which a Poisson distribution is a suitable model for \(X\). The number of misprints per page has a Poisson distribution with mean 2.5. Find the probability that
  2. a randomly chosen page has no misprints,
  3. the total number of misprints on 2 randomly chosen pages is more than 7 . The first chapter contains 20 pages.
  4. Using a suitable approximation find, to 2 decimal places, the probability that the chapter will contain less than 40 misprints.
Question 4
View details
4. Explain what you understand by
  1. a sampling unit,
  2. a sampling frame,
  3. a sampling distribution.
Question 5
View details
5. In a manufacturing process, \(2 \%\) of the articles produced are defective. A batch of 200 articles is selected.
  1. Giving a justification for your choice, use a suitable approximation to estimate the probability that there are exactly 5 defective articles.
  2. Estimate the probability there are less than 5 defective articles.
Question 6
View details
6. A continuous random variable \(X\) has probability density function \(\mathrm { f } ( x )\) where $$f ( x ) = \begin{cases} k \left( 4 x - x ^ { 3 } \right) , & 0 \leqslant x \leqslant 2
0 , & \text { otherwise } \end{cases}$$ where \(k\) is a positive integer.
  1. Show that \(k = \frac { 1 } { 4 }\). Find
  2. \(\mathrm { E } ( X )\),
  3. the mode of \(X\),
  4. the median of \(X\).
  5. Comment on the skewness of the distribution.
  6. Sketch f(x).
Question 7
View details
7. A drugs company claims that \(75 \%\) of patients suffering from depression recover when treated with a new drug. A random sample of 10 patients with depression is taken from a doctor's records.
  1. Write down a suitable distribution to model the number of patients in this sample who recover when treated with the new drug. Given that the claim is correct,
  2. find the probability that the treatment will be successful for exactly 6 patients. The doctor believes that the claim is incorrect and the percentage who will recover is lower. From her records she took a random sample of 20 patients who had been treated with the new drug. She found that 13 had recovered.
  3. Stating your hypotheses clearly, test, at the \(5 \%\) level of significance, the doctor's belief.
  4. From a sample of size 20, find the greatest number of patients who need to recover for the test in part (c) to be significant at the \(1 \%\) level.