5. A continuous random variable \(X\) has probability density function \(\mathrm { f } ( x )\) where
$$f ( x ) = \begin{cases} k x ( x - 2 ) , & 2 \leq x \leq 3
0 , & \text { otherwise } \end{cases}$$
where \(k\) is a positive constant.
- Show that \(k = \frac { 3 } { 4 }\).
Find
- \(\mathrm { E } ( X )\),
- the cumulative distribution function \(\mathrm { F } ( x )\).
- Show that the median value of \(X\) lies between 2.70 and 2.75.