4. The continuous random variable \(X\) has cumulative distribution function
$$\mathrm { F } ( x ) = \begin{cases} 0 , & x < 0
\frac { 1 } { 3 } x ^ { 2 } \left( 4 - x ^ { 2 } \right) , & 0 \leq x \leq 1
1 & x > 1 \end{cases}$$
- Find \(\mathrm { P } ( X > 0.7 )\).
- Find the probability density function \(\mathrm { f } ( x )\) of \(X\).
- Calculate \(\mathrm { E } ( X )\) and show that, to 3 decimal places, \(\operatorname { Var } ( X ) = 0.057\).
One measure of skewness is
$$\frac { \text { Mean - Mode } } { \text { Standard deviation } } .$$
- Evaluate the skewness of the distribution of \(X\).