Edexcel S2 (Statistics 2) 2022 June

Question 1
View details
  1. The independent random variables \(W\) and \(X\) have the following distributions.
$$W \sim \operatorname { Po } ( 4 ) \quad X \sim \mathrm {~B} ( 3,0.8 )$$
  1. Write down the value of the variance of \(W\)
  2. Determine the mode of \(X\) Show your working clearly. One observation from each distribution is recorded as \(W _ { 1 }\) and \(X _ { 1 }\) respectively.
  3. Find \(\mathrm { P } \left( W _ { 1 } = 2 \right.\) and \(\left. X _ { 1 } = 2 \right)\)
  4. Find \(\mathrm { P } \left( X _ { 1 } < W _ { 1 } \right)\)
Question 2
View details
  1. The time, in minutes, spent waiting for a call to a call centre to be answered is modelled by the random variable \(T\) with probability density function
$$f ( t ) = \left\{ \begin{array} { l c } \frac { 1 } { 192 } \left( t ^ { 3 } - 48 t + 128 \right) & 0 \leqslant t \leqslant 4
0 & \text { otherwise } \end{array} \right.$$
  1. Use algebraic integration to find, in minutes and seconds, the mean waiting time.
  2. Show that \(\mathrm { P } ( 1 < T < 3 ) = \frac { 7 } { 16 }\) A supervisor randomly selects 256 calls to the call centre.
  3. Use a suitable approximation to find the probability that more than 125 of these calls take between 1 and 3 minutes to be answered.
Question 3
View details
  1. A point is to be randomly plotted on the \(x\)-axis, where the units are measured in cm .
The random variable \(R\) represents the \(x\) coordinate of the point on the \(x\)-axis and \(R\) is uniformly distributed over the interval [-5,19] A negative value indicates that the point is to the left of the origin and a positive value indicates that the point is to the right of the origin.
  1. Find the exact probability that the point is plotted to the right of the origin.
  2. Find the exact probability that the point is plotted more than 3.5 cm away from the origin.
  3. Sketch the cumulative distribution function of \(R\) Three independent points with \(x\) coordinates \(R _ { 1 } , R _ { 2 }\) and \(R _ { 3 }\) are plotted on the \(x\)-axis.
  4. Find the exact probability that
    1. all three points are more than 10 cm from the origin
    2. the point furthest from the origin is more than 10 cm from the origin.
Question 4
View details
  1. Past evidence shows that \(7 \%\) of pears grown by a farmer are unfit for sale.
This season it is believed that the proportion of pears that are unfit for sale has decreased. To test this belief a random sample of \(n\) pears is taken. The random variable \(Y\) represents the number of pears in the sample that are unfit for sale.
  1. Find the smallest value of \(n\) such that \(Y = 0\) lies in the critical region for this test at a \(5 \%\) level of significance. In the past, \(8 \%\) of the pears grown by the farmer weigh more than 180 g . This season the farmer believes the proportion of pears weighing more than 180 g has changed. She takes a random sample of 75 pears and finds that 11 of them weigh more than 180 g .
  2. Test, using a suitable approximation, whether there is evidence of a change in the proportion of pears weighing more than 180 g .
    You should use a \(5 \%\) level of significance and state your hypotheses clearly.
Question 5
View details
  1. The number of particles per millilitre in a solution is modelled by a Poisson distribution with mean 0.15
A randomly selected 50 millilitre sample of the solution is taken.
  1. Find the probability that
    1. exactly 10 particles are found,
    2. between 6 and 11 particles (inclusive) are found. Petra takes 12 independent samples of \(m\) millilitres of the solution.
      The probability that at least 2 of these samples contain no particles is 0.1184
  2. Using the Statistical Tables provided, find the value of \(m\)
Question 6
View details
  1. The continuous random variable \(X\) has probability density function
$$f ( x ) = \begin{cases} 0.1 x & 0 \leqslant x < 2
k x ( 8 - x ) & 2 \leqslant x < 4
a & 4 \leqslant x < 6
0 & \text { otherwise } \end{cases}$$ where \(k\) and \(a\) are constants.
It is known that \(\mathrm { P } ( X < 4 ) = \frac { 31 } { 45 }\)
  1. Find the exact value of \(k\)
    1. Find the exact value of \(a\)
    2. Find the exact value of \(\mathrm { P } ( 0 \leqslant X \leqslant 5.5 )\)
  2. Specify fully the cumulative distribution function of \(X\)
Question 7
View details
  1. A bag contains 10 counters each with exactly one number written on it.
There are 6 counters with the number 7 on them
There are 3 counters with the number 8 on them
There is 1 counter with the number 9 on it
A random sample of 3 counters is taken from the bag (without replacement).
These counters are then put back in the bag.
This process is then repeated until 20 samples have been taken.
The random variable \(Y\) represents the number of these 20 samples that contain the counter with the number 9 on it.
    1. Find the mean of \(Y\)
    2. Find the variance of \(Y\) A random sample of 3 counters is chosen from the bag (without replacement).
  1. List all possible samples where the median of the numbers on the 3 counters is 7
  2. Find the sampling distribution of the median of the numbers on the 3 counters.