- The continuous random variable \(X\) has cumulative distribution function
$$\mathrm { F } ( x ) = \left\{ \begin{array} { l r }
0 & x < 0
a x + b x ^ { 2 } & 0 \leqslant x \leqslant k
1 & x > k
\end{array} \right.$$
where \(a , b\) and \(k\) are positive constants.
- Show that \(a k = 1 - b k ^ { 2 }\)
Using part (a) and given that \(\mathrm { E } ( X ) = \frac { 6 } { 5 }\)
- show that \(5 b k ^ { 3 } = 36 - 15 k\)
Using part (a) and given that \(\mathrm { E } ( X ) = \frac { 6 } { 5 }\) and \(\operatorname { Var } ( X ) = \frac { 22 } { 75 }\)
- show that \(5 b k ^ { 4 } = 52 - 10 k ^ { 2 }\)
Given that \(k < 3\)
- find the value of \(k\)
- Hence find the value of \(a\) and the value of \(b\)