CAIE P2 (Pure Mathematics 2) 2012 November

Question 5
View details
5
\includegraphics[max width=\textwidth, alt={}, center]{96a4df57-b3c7-4dbf-9bea-bb00ed6a4a16-2_512_775_1318_683} The diagram shows the curve \(y = \cos x\), for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\). A rectangle \(O A B C\) is drawn, where \(B\) is the point on the curve with \(x\)-coordinate \(\theta\), and \(A\) and \(C\) are on the axes, as shown. The shaded region \(R\) is bounded by the curve and by the lines \(x = \theta\) and \(y = 0\).
  1. Find the area of \(R\) in terms of \(\theta\).
  2. The area of the rectangle \(O A B C\) is equal to the area of \(R\). Show that $$\theta = \frac { 1 - \sin \theta } { \cos \theta }$$
  3. Use the iterative formula \(\theta _ { n + 1 } = \frac { 1 - \sin \theta _ { n } } { \cos \theta _ { n } }\), with initial value \(\theta _ { 1 } = 0.5\), to determine the value of \(\theta\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.