CAIE P2 (Pure Mathematics 2) 2010 November

Question 1
View details
1 Solve the inequality \(| x + 1 | > | x - 4 |\).
Question 8
View details
8
\includegraphics[max width=\textwidth, alt={}, center]{2aceb797-097c-499b-99b6-cce9f287cb51-3_566_787_255_680} The diagram shows the curve \(y = x \sin x\), for \(0 \leqslant x \leqslant \pi\). The point \(Q \left( \frac { 1 } { 2 } \pi , \frac { 1 } { 2 } \pi \right)\) lies on the curve.
  1. Show that the normal to the curve at \(Q\) passes through the point \(( \pi , 0 )\).
  2. Find \(\frac { \mathrm { d } } { \mathrm { d } x } ( \sin x - x \cos x )\).
  3. Hence evaluate \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x \sin x \mathrm {~d} x\).