Edexcel S1 (Statistics 1) 2018 Specimen

Question 1
View details
  1. The percentage oil content, \(p\), and the weight, \(w\) milligrams, of each of 10 randomly selected sunflower seeds were recorded. These data are summarised below.
$$\sum w ^ { 2 } = 41252 \quad \sum w p = 27557.8 \quad \sum w = 640 \quad \sum p = 431 \quad \mathrm {~S} _ { p p } = 2.72$$
  1. Find the value of \(\mathrm { S } _ { w w }\) and the value of \(\mathrm { S } _ { w p }\)
  2. Calculate the product moment correlation coefficient between \(p\) and \(w\)
  3. Give an interpretation of your product moment correlation coefficient. The equation of the regression line of \(p\) on \(w\) is given in the form \(p = a + b w\)
  4. Find the equation of the regression line of \(p\) on \(w\)
  5. Hence estimate the percentage oil content of a sunflower seed which weighs 60 milligrams.
    \(\_\_\_\_\) VAYV SIHI NI JIIIM ION OC
    VJYV SIHI NI JIIIM ION OC
    VJYV SIHI NI JLIYM ION OC
Question 2
View details
  1. The time taken to complete a puzzle, in minutes, is recorded for each person in a club. The times are summarised in a grouped frequency distribution and represented by a histogram.
One of the class intervals has a frequency of 20 and is shown by a bar of width 1.5 cm and height 12 cm on the histogram. The total area under the histogram is \(94.5 \mathrm {~cm} ^ { 2 }\) Find the number of people in the club.
Question 3
View details
3. The discrete random variable \(X\) has probability distribution $$\mathrm { P } ( X = x ) = \frac { 1 } { 5 } \quad x = 1,2,3,4,5$$
  1. Write down the name given to this distribution. Find
  2. \(\mathrm { P } ( X = 4 )\)
  3. \(\mathrm { F } ( 3 )\)
  4. \(\mathrm { P } ( 3 X - 3 > X + 4 )\)
  5. Write down \(\mathrm { E } ( X )\)
  6. Find \(\mathrm { E } \left( X ^ { 2 } \right)\)
  7. Hence find \(\operatorname { Var } ( X )\) Given that \(\mathrm { E } ( a X - 3 ) = 11.4\)
  8. find \(\operatorname { Var } ( a X - 3 )\)
    \includegraphics[max width=\textwidth, alt={}, center]{b7500cc1-caa6-4767-bb2e-e3d70474e805-09_2261_54_312_34} \(\_\_\_\_\) VAYV SIHI NI JIIIM ION OC
    VJYV SIHI NI JIIIM ION OC
    VJYV SIHI NI JLIYM ION OC
Question 4
View details
  1. A researcher recorded the time, \(t\) minutes, spent using a mobile phone during a particular afternoon, for each child in a club.
The researcher coded the data using \(v = \frac { t - 5 } { 10 }\) and the results are summarised in the table below.
Coded Time (v)Frequency ( \(\boldsymbol { f }\) )Coded Time Midpoint (m)
\(0 \leqslant v < 5\)202.5
\(5 \leqslant v < 10\)24\(a\)
\(10 \leqslant v < 15\)1612.5
\(15 \leqslant v < 20\)1417.5
\(20 \leqslant v < 30\)6\(b\)
$$\text { (You may use } \sum f m = 825 \text { and } \sum f m ^ { 2 } = 12012.5 \text { ) }$$
  1. Write down the value of \(a\) and the value of \(b\).
  2. Calculate an estimate of the mean of \(v\).
  3. Calculate an estimate of the standard deviation of \(v\).
  4. Use linear interpolation to estimate the median of \(v\).
  5. Hence describe the skewness of the distribution. Give a reason for your answer.
  6. Calculate estimates of the mean and the standard deviation of the time spent using a mobile phone during the afternoon by the children in this club. \(\_\_\_\_\) VAYV SIHI NI JIIIM ION OC
    VJYV SIHI NI JIIIM ION OC
    VJYV SIHI NI JLIYM ION OC
Question 5
View details
  1. A biased tetrahedral die has faces numbered \(0,1,2\) and 3 . The die is rolled and the number face down on the die, \(X\), is recorded. The probability distribution of \(X\) is
\(x\)0123
\(\mathrm { P } ( X = x )\)\(\frac { 1 } { 6 }\)\(\frac { 1 } { 6 }\)\(\frac { 1 } { 6 }\)\(\frac { 1 } { 2 }\)
If \(X = 3\) then the final score is 3
If \(X \neq 3\) then the die is rolled again and the final score is the sum of the two numbers.
The random variable \(T\) is the final score.
  1. Find \(\mathrm { P } ( T = 2 )\)
  2. Find \(\mathrm { P } ( T = 3 )\)
  3. Given that the die is rolled twice, find the probability that the final score is 3
    \(\_\_\_\_\) VAYV SIHI NI JIIIM ION OC
    VAYV SIHIL NI JIIIMM ION OC
    VJYV SIHI NI JLIYM ION OC
Question 6
View details
6. Three events \(A , B\) and \(C\) are such that $$\mathrm { P } ( A ) = \frac { 2 } { 5 } \quad \mathrm { P } ( C ) = \frac { 1 } { 2 } \quad \mathrm { P } ( A \cup B ) = \frac { 5 } { 8 }$$ Given that \(A\) and \(C\) are mutually exclusive find
  1. \(\mathrm { P } ( A \cup C )\) Given that \(A\) and \(B\) are independent
  2. show that \(\mathrm { P } ( B ) = \frac { 3 } { 8 }\)
  3. Find \(\mathrm { P } ( A \mid B )\) Given that \(\mathrm { P } \left( C ^ { \prime } \cap B ^ { \prime } \right) = 0.3\)
  4. draw a Venn diagram to represent the events \(A , B\) and \(C\)
    \includegraphics[max width=\textwidth, alt={}, center]{b7500cc1-caa6-4767-bb2e-e3d70474e805-21_2260_53_312_33} \(\_\_\_\_\) VAYV SIHI NI JIIIM ION OC
    VJYV SIHI NI JIIIM ION OC
    VJYV SIHI NI JLIYM ION OC
Question 7
View details
  1. A machine fills bottles with water. The volume of water delivered by the machine to a bottle is \(X \mathrm { ml }\) where \(X \sim \mathrm {~N} \left( \mu , \sigma ^ { 2 } \right)\)
One of these bottles of water is selected at random.
Given that \(\mu = 503\) and \(\sigma = 1.6\)
  1. find
    1. \(\mathrm { P } ( X > 505 )\)
    2. \(\mathrm { P } ( 501 < X < 505 )\)
  2. Find \(w\) such that \(\mathrm { P } ( 1006 - w < X < w ) = 0.9426\) Following adjustments to the machine, the volume of water delivered by the machine to a bottle is such that \(\mu = 503\) and \(\sigma = q\) Given that \(\mathrm { P } ( X < r ) = 0.01\) and \(\mathrm { P } ( X > r + 6 ) = 0.05\)
  3. find the value of \(r\) and the value of \(q\)
    \(\_\_\_\_\) VAYV SIHI NI JIIIM ION OC
    VJYV SIHI NI JIIIM ION OC
    VEYV SIHI NI ELIYM ION OC
    VIAV SIHI NI BIIYM ION OOV34V SIHI NI IIIYM ION OOV38V SIHI NI JLIYM ION OC