6
\includegraphics[max width=\textwidth, alt={}, center]{f5e0b088-73db-405b-a832-aa01d9fcba64-08_396_716_260_712}
The diagram shows the curve with parametric equations
$$x = 3 t - 6 \mathrm { e } ^ { - 2 t } , \quad y = 4 t ^ { 2 } \mathrm { e } ^ { - t }$$
for \(0 \leqslant t \leqslant 2\). At the point \(P\) on the curve, the \(y\)-coordinate is 1 .
- Show that the value of \(t\) at the point \(P\) satisfies the equation \(t = \frac { 1 } { 2 } \mathrm { e } ^ { \frac { 1 } { 2 } t }\).
- Use the iterative formula \(t _ { n + 1 } = \frac { 1 } { 2 } \mathrm { e } ^ { \frac { 1 } { 2 } t _ { n } }\) with \(t _ { 1 } = 0.7\) to find the value of \(t\) at \(P\) correct to 3 significant figures. Give the result of each iteration to 5 significant figures.
- Find the gradient of the curve at \(P\), giving the answer correct to 2 significant figures.