Edexcel M3 (Mechanics 3) 2007 January

Question 1
View details
  1. A particle \(P\) moves along the \(x\)-axis. At time \(t = 0 , P\) passes through the origin \(O\), moving in the positive \(x\)-direction. At time \(t\) seconds, the velocity of \(P\) is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(O P = x\) metres. The acceleration of \(P\) is \(\frac { 1 } { 12 } ( 30 - x ) \mathrm { m } \mathrm { s } ^ { - 2 }\), measured in the positive \(x\)-direction.
    1. Give a reason why the maximum speed of \(P\) occurs when \(x = 30\).
    Given that the maximum speed of \(P\) is \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\),
  2. find an expression for \(v ^ { 2 }\) in terms of \(x\).
Question 2
View details
2. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{25b3ece7-69ed-4ec4-a6c7-4cd83ec2cc5e-03_513_399_303_785}
\end{figure} A uniform solid right circular cone has base radius \(a\) and semi-vertical angle \(\alpha\), where \(\tan \alpha = \frac { 1 } { 3 }\). The cone is freely suspended by a string attached at a point \(A\) on the rim of its base, and hangs in equilibrium with its axis of symmetry making an angle of \(\theta ^ { \circ }\) with the upward vertical, as shown in Figure 1. Find, to one decimal place, the value of \(\theta\).
Question 3
View details
3. A particle \(P\) of mass \(m\) is attached to one end of a light elastic string, of natural length \(a\) and modulus of elasticity 3.6 mg . The other end of the string is fixed at a point \(O\) on a rough horizontal table. The particle is projected along the surface of the table from \(O\) with speed \(\sqrt { } ( 2 a g )\). At its furthest point from \(O\), the particle is at the point \(A\), where \(O A = \frac { 4 } { 3 } a\).
  1. Find, in terms of \(m , g\) and \(a\), the elastic energy stored in the string when \(P\) is at \(A\).
  2. Using the work-energy principle, or otherwise, find the coefficient of friction between \(P\) and the table.
Question 4
View details
4. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{25b3ece7-69ed-4ec4-a6c7-4cd83ec2cc5e-05_574_510_324_726}
\end{figure} A particle \(P\) of mass \(m\) is attached to one end of a light inextensible string of length \(a\). The other end of the string is attached to a point \(O\). The point \(A\) is vertically below \(O\), and \(O A = a\). The particle is projected horizontally from \(A\) with speed \(\sqrt { } ( 3 a g )\). When \(O P\) makes an angle \(\theta\) with the upward vertical through \(O\) and the string is still taut, the tension in the string is \(T\) and the speed of \(P\) is \(v\), as shown in Figure 2.
  1. Find, in terms of \(a , g\) and \(\theta\), an expression for \(v ^ { 2 }\).
  2. Show that \(T = ( 1 - 3 \cos \theta ) m g\). The string becomes slack when \(P\) is at the point \(B\).
  3. Find, in terms of \(a\), the vertical height of \(B\) above \(A\). After the string becomes slack, the highest point reached by \(P\) is \(C\).
  4. Find, in terms of \(a\), the vertical height of \(C\) above \(B\).
Question 5
View details
5. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 3} \includegraphics[alt={},max width=\textwidth]{25b3ece7-69ed-4ec4-a6c7-4cd83ec2cc5e-07_531_691_299_657}
\end{figure} One end of a light inextensible string is attached to a fixed point \(A\). The other end of the string is attached to a fixed point \(B\), vertically below \(A\), where \(A B = h\). A small smooth ring \(R\) of mass \(m\) is threaded on the string. The ring \(R\) moves in a horizontal circle with centre \(B\), as shown in Figure 3. The upper section of the string makes a constant angle \(\theta\) with the downward vertical and \(R\) moves with constant angular speed \(\omega\). The ring is modelled as a particle.
  1. Show that \(\omega ^ { 2 } = \frac { g } { h } \left( \frac { 1 + \sin \theta } { \sin \theta } \right)\).
  2. Deduce that \(\omega > \sqrt { \frac { 2 g } { h } }\). Given that \(\omega = \sqrt { \frac { 3 g } { h } }\),
  3. find, in terms of \(m\) and \(g\), the tension in the string.
Question 6
View details
6. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 4} \includegraphics[alt={},max width=\textwidth]{25b3ece7-69ed-4ec4-a6c7-4cd83ec2cc5e-09_515_1015_319_477}
\end{figure} The shaded region \(R\) is bounded by the curve with equation \(y = \frac { 1 } { 2 x ^ { 2 } }\), the \(x\)-axis and the lines \(x = 1\) and \(x = 2\), as shown in Figure 4. The unit of length on each axis is 1 m . A uniform solid \(S\) has the shape made by rotating \(R\) through \(360 ^ { \circ }\) about the \(x\)-axis.
  1. Show that the centre of mass of \(S\) is \(\frac { 2 } { 7 } \mathrm {~m}\) from its larger plane face. \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 5} \includegraphics[alt={},max width=\textwidth]{25b3ece7-69ed-4ec4-a6c7-4cd83ec2cc5e-09_616_431_1420_778}
    \end{figure} A sporting trophy \(T\) is a uniform solid hemisphere \(H\) joined to the solid \(S\). The hemisphere has radius \(\frac { 1 } { 2 } \mathrm {~m}\) and its plane face coincides with the larger plane face of \(S\), as shown in Figure 5. Both \(H\) and \(S\) are made of the same material.
  2. Find the distance of the centre of mass of \(T\) from its plane face.
Question 7
View details
  1. A particle \(P\) of mass 0.25 kg is attached to one end of a light elastic string. The string has natural length 0.8 m and modulus of elasticity \(\lambda \mathrm { N }\). The other end of the string is attached to a fixed point \(A\). In its equilibrium position, \(P\) is 0.85 m vertically below \(A\).
    1. Show that \(\lambda = 39.2\).
    The particle is now displaced to a point \(B , 0.95 \mathrm {~m}\) vertically below \(A\), and released from rest.
  2. Prove that, while the string remains stretched, \(P\) moves with simple harmonic motion of period \(\frac { \pi } { 7 } \mathrm {~s}\).
  3. Calculate the speed of \(P\) at the instant when the string first becomes slack. The particle first comes to instantaneous rest at the point \(C\).
  4. Find, to 3 significant figures, the time taken for \(P\) to move from \(B\) to \(C\).