CAIE P2 (Pure Mathematics 2) 2017 June

Question 5
View details
5
\includegraphics[max width=\textwidth, alt={}, center]{bdc467f6-105e-4429-95c6-701eaa43deff-05_551_533_260_806} The variables \(x\) and \(y\) satisfy the equation \(y = \frac { K } { a ^ { 2 x } }\), where \(K\) and \(a\) are constants. The graph of \(\ln y\) against \(x\) is a straight line passing through the points \(( 0.6,1.81 )\) and \(( 1.4,1.39 )\), as shown in the diagram. Find the values of \(K\) and \(a\) correct to 2 significant figures.
Question 8
View details
8
\includegraphics[max width=\textwidth, alt={}, center]{bdc467f6-105e-4429-95c6-701eaa43deff-10_549_495_258_824} The diagram shows the curve with parametric equations $$x = 2 - \cos 2 t , \quad y = 2 \sin ^ { 3 } t + 3 \cos ^ { 3 } t + 1$$ for \(0 \leqslant t \leqslant \frac { 1 } { 2 } \pi\). The end-points of the curve are \(( 1,4 )\) and \(( 3,3 )\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 3 } { 2 } \sin t - \frac { 9 } { 4 } \cos t\).
  2. Find the coordinates of the minimum point, giving each coordinate correct to 3 significant figures.
  3. Find the exact gradient of the normal to the curve at the point for which \(x = 2\).