CAIE P2 (Pure Mathematics 2) 2016 June

Question 1
View details
1 Find the gradient of the curve $$y = 3 e ^ { 4 x } - 6 \ln ( 2 x + 3 )$$ at the point for which \(x = 0\).
Question 2
View details
2 Solve the equation \(5 \tan 2 \theta = 4 \cot \theta\) for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
Question 3
View details
3 Given that \(3 \mathrm { e } ^ { x } + 8 \mathrm { e } ^ { - x } = 14\), find the possible values of \(\mathrm { e } ^ { x }\) and hence solve the equation \(3 \mathrm { e } ^ { x } + 8 \mathrm { e } ^ { - x } = 14\) correct to 3 significant figures.
Question 4
View details
4 The polynomial \(\mathrm { p } ( x )\) is defined by $$\mathrm { p } ( x ) = 8 x ^ { 3 } + 30 x ^ { 2 } + 13 x - 25$$
  1. Find the quotient when \(\mathrm { p } ( x )\) is divided by ( \(x + 2\) ), and show that the remainder is 5 .
  2. Hence factorise \(\mathrm { p } ( x ) - 5\) completely.
  3. Write down the roots of the equation \(\mathrm { p } ( | x | ) - 5 = 0\).
Question 5
View details
5 A curve is defined by the parametric equations $$x = 2 \tan \theta , \quad y = 3 \sin 2 \theta$$ for \(0 \leqslant \theta < \frac { 1 } { 2 } \pi\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 6 \cos ^ { 4 } \theta - 3 \cos ^ { 2 } \theta\).
  2. Find the coordinates of the stationary point.
  3. Find the gradient of the curve at the point \(\left( 2 \sqrt { } 3 , \frac { 3 } { 2 } \sqrt { } 3 \right)\).
Question 6
View details
6 The equation of a curve is \(y = \frac { 3 x ^ { 2 } } { x ^ { 2 } + 4 }\). At the point on the curve with positive \(x\)-coordinate \(p\), the gradient of the curve is \(\frac { 1 } { 2 }\).
  1. Show that \(p = \sqrt { } \left( \frac { 48 p - 16 } { p ^ { 2 } + 8 } \right)\).
  2. Show by calculation that \(2 < p < 3\).
  3. Use an iterative formula based on the equation in part (i) to find the value of \(p\) correct to 4 significant figures. Give the result of each iteration to 6 significant figures.
Question 7
View details
7
  1. Find \(\int \frac { 1 + \cos ^ { 4 } 2 x } { \cos ^ { 2 } 2 x } \mathrm {~d} x\).
  2. Without using a calculator, find the exact value of \(\int _ { 4 } ^ { 14 } \left( 2 + \frac { 6 } { 3 x - 2 } \right) \mathrm { d } x\), giving your answer in the form \(\ln \left( a \mathrm { e } ^ { b } \right)\), where \(a\) and \(b\) are integers.