CAIE P2 (Pure Mathematics 2) 2014 June

Question 5 6 marks
View details
5
\includegraphics[max width=\textwidth, alt={}, center]{22ba6cc7-7375-434e-9eaa-d536684dd727-2_583_597_1457_772} The variables \(x\) and \(y\) satisfy the equation \(y = K \left( 2 ^ { p x } \right)\), where \(K\) and \(p\) are constants. The graph of \(\ln y\) against \(x\) is a straight line passing through the points ( \(1.35,1.87\) ) and ( \(3.35,3.81\) ), as shown in the diagram. Find the values of \(K\) and \(p\) correct to 2 decimal places.
[0pt] [6]
Question 8
View details
8
\includegraphics[max width=\textwidth, alt={}, center]{22ba6cc7-7375-434e-9eaa-d536684dd727-3_581_650_1272_744} The diagram shows the curve $$y = \tan x \cos 2 x , \text { for } 0 \leqslant x < \frac { 1 } { 2 } \pi$$ and its maximum point \(M\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 4 \cos ^ { 2 } x - \sec ^ { 2 } x - 2\).
  2. Hence find the \(x\)-coordinate of \(M\), giving your answer correct to 2 decimal places.