Edexcel M2 (Mechanics 2) Specimen

Question 1
View details
  1. The vectors \(\mathbf { i }\) and \(\mathbf { j }\) are perpendicular unit vectors in a horizontal plane. A ball of mass 0.5 kg is moving with velocity \(- 20 \mathbf { i } \mathrm {~m} \mathrm {~s} ^ { - 1 }\) when it is struck by a bat. The bat gives the ball an impulse of \(( 15 \mathbf { i } + 10 \mathbf { j } )\) Ns.
Find, to 3 significant figures, the speed of the ball immediately after it has been struck.
(5)
Question 2
View details
2. A bullet of mass 6 grams passes horizontally through a fixed, vertical board. After the bullet has travelled 2 cm through the board its speed is reduced from \(400 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) to \(250 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The board exerts a constant resistive force on the bullet. Find, to 3 significant figures, the magnitude of this resistive force.
(5)
Question 3
View details
3. At time \(t\) seconds, a particle \(P\) has position vector \(\mathbf { r }\) metres relative to a fixed origin \(O\), where $$\mathbf { r } = \left( t ^ { 3 } - 3 t \right) \mathbf { i } + 4 t ^ { 2 } \mathbf { j } , t \geq 0$$ Find
  1. the velocity of \(P\) at time \(t\) seconds,
  2. the time when \(P\) is moving parallel to the vector \(\mathbf { i } + \mathbf { j }\).
    (5)
Question 4
View details
4. \section*{Figure 1}
\includegraphics[max width=\textwidth, alt={}]{0d3d35b1-e3c5-47ac-b05e-78cdf1eb3083-3_714_565_262_749}
A uniform ladder, of mass \(m\) and length \(2 a\), has one end on rough horizontal ground. The other end rests against a smooth vertical wall. A man of mass \(3 m\) stands at the top of the ladder and the ladder is in equilibrium. The coefficient of friction between the ladder and the ground is \(\frac { 1 } { 4 }\), and the ladder makes an angle \(\alpha\) with the vertical, as shown in Fig. 1. The ladder is in a vertical plane perpendicular to the wall. Show that \(\tan \alpha \leq \frac { 2 } { 7 }\).
Question 5
View details
5. A straight road is inclined at an angle \(\alpha\) to the horizontal, where \(\sin \alpha = \frac { 1 } { 20 }\). A lorry of mass 4800 kg moves up the road at a constant speed of \(12 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The non-gravitational resistance to the motion of the lorry is constant and has magnitude 2000 N .
  1. Find, in kW to 3 significant figures, the rate of working of the lorry's engine.
    (5) The road becomes horizontal. The lorry's engine continues to work at the same rate and the resistance to motion remains the same. Find
  2. the acceleration of the lorry immediately after the road becomes horizontal,
    (3)
  3. the maximum speed, in \(\mathrm { m } \mathrm { s } ^ { - 1 }\) to 3 significant figures, at which the lorry will go along the horizontal road.
    (3)
Question 6
View details
6. A cricket ball is hit from a height of 0.8 m above horizontal ground with a speed of \(26 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle \(\alpha\) above the horizontal, where \(\tan \alpha = \frac { 5 } { 12 }\). The motion of the ball is modelled as that of a particle moving freely under gravity.
  1. Find, to 2 significant figures, the greatest height above the ground reached by the ball. When the ball has travelled a horizontal distance of 36 m , it hits a window.
  2. Find, to 2 significant figures, the height above the ground at which the ball hits the window.
  3. State one physical factor which could be taken into account in any refinement of the model which would make it more realistic. Figure 2
Question 7
View details
7.
\includegraphics[max width=\textwidth, alt={}, center]{0d3d35b1-e3c5-47ac-b05e-78cdf1eb3083-4_360_472_1105_815} A uniform plane lamina \(A B C D E\) is formed by joining a uniform square \(A B D E\) with a uniform triangular lamina \(B C D\), of the same material, along the side \(B D\), as shown in Fig. 2. The lengths \(A B , B C\) and \(C D\) are \(18 \mathrm {~cm} , 15 \mathrm {~cm}\) and 15 cm respectively.
  1. Find the distance of the centre of mass of the lamina from \(A E\). The lamina is freely suspended from \(B\) and hangs in equilibrium.
  2. Find, in degrees to one decimal place, the angle which \(B D\) makes with the vertical.
Question 8
View details
8. A particle \(A\) of mass \(m\) is moving with speed \(3 u\) on a smooth horizontal table when it collides directly with a particle \(B\) of mass \(2 m\) which is moving in the opposite direction with speed \(u\). The direction of motion of \(A\) is reversed by the collision. The coefficient of restitution between \(A\) and \(B\) is \(e\).
  1. Show that the speed of \(B\) immediately after the collision is \(\frac { 1 } { 3 } ( 1 + 4 e ) u\).
    (6)
  2. Show that \(e > \frac { 1 } { 8 }\).
    (3) Subsequently \(B\) hits a wall fixed at right angles to the line of motion of \(A\) and \(B\). The coefficient of restitution between \(B\) and the wall is \(\frac { 1 } { 2 }\). After \(B\) rebounds from the wall, there is a further collision between \(A\) and \(B\).
  3. Show that \(e < \frac { 1 } { 4 }\).
    (4) END