4.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5f2d38d9-b719-4205-8cb0-caa959afc46f-12_540_584_294_680}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
A particle \(P\) of mass \(m \mathrm {~kg}\) is attached to one end of a light inextensible string of length 2.5 m . The other end of the string is attached to a fixed point \(A\) on a vertical wall. The tension in the string is 16 N . The particle is held in equilibrium by a force of magnitude \(F\) newtons, acting in the vertical plane which is perpendicular to the wall and contains the string. This force acts in a direction perpendicular to the string, as shown in Figure 2.
Given that the horizontal distance of \(P\) from the wall is 1.5 m , find
- the value of \(F\),
- the value of \(m\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5f2d38d9-b719-4205-8cb0-caa959afc46f-16_186_830_292_557}
\captionsetup{labelformat=empty}
\caption{Figure 3}
\end{figure}
Two posts, \(A\) and \(B\), are fixed at the side of a straight horizontal road and are 816 m apart, as shown in Figure 3. A car and a van are at rest side by side on the road and level with \(A\). The car and the van start to move at the same time in the direction \(A B\). The car accelerates from rest with constant acceleration until it reaches a speed of \(24 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The car then moves at a constant speed of \(24 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The van accelerates from rest with constant acceleration for 12 s until it reaches a speed of \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The van then moves at a constant speed of \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\). When the car has been moving at \(24 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) for 30 s , the van draws level with the car at \(B\), and each vehicle has then travelled a distance of 816 m .
(a) Sketch, on the same diagram, a speed-time graph for the motion of each vehicle from \(A\) to \(B\).
(b) Find the time for which the car is accelerating.
(c) Find the value of \(V\).