2.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{04b73f81-3316-4f26-ad98-a7be3a4b738f-06_241_768_214_589}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
A particle \(P\) of weight 40 N lies at rest in equilibrium on a fixed rough horizontal surface. A force of magnitude 20 N is applied to \(P\). The force acts at angle \(\theta\) to the horizontal, as shown in Figure 2. The coefficient of friction between \(P\) and the surface is \(\mu\).
Given that the particle remains at rest, show that
$$\mu \geqslant \frac { \cos \theta } { 2 + \sin \theta }$$
\includegraphics[max width=\textwidth, alt={}, center]{04b73f81-3316-4f26-ad98-a7be3a4b738f-07_119_167_2615_1777}