4.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ba698f74-a51c-409a-a9d9-e9080fc87be2-06_266_1440_239_251}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
A plank \(A B\) of mass 20 kg and length 8 m is resting in a horizontal position on two supports at \(C\) and \(D\), where \(A C = 1.5 \mathrm {~m}\) and \(D B = 2 \mathrm {~m}\). A package of mass 8 kg is placed on the plank at \(C\), as shown in Figure 2. The plank remains horizontal and in equilibrium. The plank is modelled as a uniform rod and the package is modelled as a particle.
- Find the magnitude of the normal reaction
- between the plank and the support at \(C\),
- between the plank and the support at \(D\).
(6)
The package is now moved along the plank to the point \(E\). When the package is at \(E\), the magnitude of the normal reaction between the plank and the support at \(C\) is \(R\) newtons and the magnitude of the normal reaction between the plank and the support at \(D\) is \(2 R\) newtons.
- Find the distance \(A E\).
- State how you have used the fact that the package is modelled as a particle.