Edexcel FP3 (Further Pure Mathematics 3) 2010 June

Question 1
View details
  1. The line \(x = 8\) is a directrix of the ellipse with equation
$$\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } = 1 , \quad a > 0 , b > 0$$ and the point \(( 2,0 )\) is the corresponding focus.
Find the value of \(a\) and the value of \(b\).
Question 2
View details
2. Use calculus to find the exact value of \(\int _ { - 2 } ^ { 1 } \frac { 1 } { x ^ { 2 } + 4 x + 13 } \mathrm {~d} x\).
Question 3
View details
3. (a) Starting from the definitions of \(\sinh x\) and \(\cosh x\) in terms of exponentials, prove that $$\cosh 2 x = 1 + 2 \sinh ^ { 2 } x$$ (b) Solve the equation $$\cosh 2 x - 3 \sinh x = 15$$ giving your answers as exact logarithms.
Question 4
View details
4. \(\quad I _ { n } = \int _ { 0 } ^ { a } ( a - x ) ^ { n } \cos x \mathrm {~d} x , \quad a > 0 , \quad n \geqslant 0\)
  1. Show that, for \(n \geqslant 2\), $$I _ { n } = n \tilde { a } ^ { - 1 } - n ( n - 1 ) I _ { n - 2 }$$
  2. Hence evaluate \(\int _ { 0 } ^ { \frac { \pi } { 2 } } \left( \frac { \pi } { 2 } - x \right) ^ { 2 } \cos x \mathrm {~d} x\).
Question 5
View details
  1. Given that \(y = ( \operatorname { arcosh } 3 x ) ^ { 2 }\), where \(3 x > 1\), show that
    1. \(\left( 9 x ^ { 2 } - 1 \right) \left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 2 } = 36 y\),
    2. \(\left( 9 x ^ { 2 } - 1 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 9 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = 18\).
Question 6
View details
6. \(\mathbf { M } = \left( \begin{array} { c c c } 1 & 0 & 3
0 & - 2 & 1
k & 0 & 1 \end{array} \right)\), where \(k\) is a constant. Given that \(\left( \begin{array} { l } 6
1
6 \end{array} \right)\) is an eigenvector of \(\mathbf { M }\),
  1. find the eigenvalue of \(\mathbf { M }\) corresponding to \(\left( \begin{array} { l } 6
    1
    6 \end{array} \right)\),
  2. show that \(k = 3\),
  3. show that \(\mathbf { M }\) has exactly two eigenvalues. A transformation \(T : \mathbb { R } ^ { 3 } \rightarrow \mathbb { R } ^ { 3 }\) is represented by \(\mathbf { M }\).
    The transformation \(T\) maps the line \(l _ { 1 }\), with cartesian equations \(\frac { x - 2 } { 1 } = \frac { y } { - 3 } = \frac { z + 1 } { 4 }\), onto the line \(l _ { 2 }\).
  4. Taking \(k = 3\), find cartesian equations of \(l _ { 2 }\).
Question 7
View details
7. The plane \(\Pi\) has vector equation $$\mathbf { r } = 3 \mathbf { i } + \mathbf { k } + \lambda ( - 4 \mathbf { i } + \mathbf { j } ) + \mu ( 6 \mathbf { i } - 2 \mathbf { j } + \mathbf { k } )$$
  1. Find an equation of \(\Pi\) in the form \(\mathbf { r } \cdot \mathbf { n } = p\), where \(\mathbf { n }\) is a vector perpendicular to \(\Pi\) and \(p\) is a constant. The point \(P\) has coordinates \(( 6,13,5 )\). The line \(l\) passes through \(P\) and is perpendicular to \(\Pi\). The line \(l\) intersects \(\Pi\) at the point \(N\).
  2. Show that the coordinates of \(N\) are \(( 3,1 , - 1 )\). The point \(R\) lies on \(\Pi\) and has coordinates \(( 1,0,2 )\).
  3. Find the perpendicular distance from \(N\) to the line \(P R\). Give your answer to 3 significant figures.
Question 8
View details
8. The hyperbola \(H\) has equation \(\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 4 } = 1\). The line \(l _ { 1 }\) is the tangent to \(H\) at the point \(P ( 4 \sec t , 2 \tan t )\).
  1. Use calculus to show that an equation of \(l _ { 1 }\) is $$2 y \sin t = x - 4 \cos t$$ The line \(l _ { 2 }\) passes through the origin and is perpendicular to \(l _ { 1 }\).
    The lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect at the point \(Q\).
  2. Show that, as \(t\) varies, an equation of the locus of \(Q\) is $$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = 16 x ^ { 2 } - 4 y ^ { 2 }$$