Edexcel F3 (Further Pure Mathematics 3) 2023 January

Question 1
View details
  1. Given that
$$y = 3 x \arcsin 2 x \quad 0 \leqslant x \leqslant \frac { 1 } { 2 }$$
  1. determine an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
  2. Hence determine the exact value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when \(x = \frac { 1 } { 4 }\), giving your answer in the form \(a \pi + b\) where \(a\) and \(b\) are fully simplified constants to be found.
Question 2
View details
  1. A hyperbola \(H\) has equation
$$\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { 5 } = 1 \quad \text { where } a \text { is a positive constant }$$ The line with equation \(x = \frac { 4 } { 3 }\) is a directrix of \(H\)
  1. Write down an equation of the other directrix.
  2. Determine
    1. the value of \(a\)
    2. the coordinates of each of the foci of \(H\)
Question 3
View details
  1. Solve the equation
$$4 \tanh x - \operatorname { sech } x = 1$$ giving your answer in the form \(x = \ln k\) where \(k\) is a fully simplified rational number.
(6)
Question 4
View details
  1. (a) Determine
$$\int \frac { 1 } { \sqrt { 9 x ^ { 2 } + 16 } } \mathrm {~d} x$$ (b) Hence determine the exact value of $$\int _ { - 2 } ^ { 2 } \frac { 1 } { \sqrt { 9 x ^ { 2 } + 16 } } d x$$ Give your answer in the form \(a \ln ( b + c \sqrt { 13 } )\), where \(a , b\) and \(c\) are rational numbers.
Question 5
View details
5. $$\mathbf { A } = \left( \begin{array} { r r r } a & a & 1
- a & 4 & 0
4 & a & 5 \end{array} \right) \quad \text { where } a \text { is a positive constant }$$
  1. Determine the exact value of \(a\) for which the matrix \(\mathbf { A }\) is singular. Given that 2 is an eigenvalue of \(\mathbf { A }\)
  2. determine
    1. the value of \(a\)
    2. the other two eigenvalues of \(\mathbf { A }\) A normalised eigenvector for the eigenvalue 2 is \(\left( \begin{array} { c } \frac { 1 } { \sqrt { 6 } }
      \frac { 1 } { \sqrt { 6 } }
      - \frac { 2 } { \sqrt { 6 } } \end{array} \right)\)
  3. Determine a normalised eigenvector for each of the other eigenvalues of \(\mathbf { A }\)
    VJYV SIHI NI JIIIM ION OCVILV SIHI NI JLIYM ION OCV34V SIHI NI IIIIM ION OC
Question 6
View details
  1. A curve has parametric equations
    where \(a\) is a positive constant.
$$\begin{aligned} & x = a ( \theta - \sin \theta )
& y = a ( 1 - \cos \theta ) \end{aligned}$$
  1. Show that $$\left( \frac { \mathrm { d } x } { \mathrm {~d} \theta } \right) ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} \theta } \right) ^ { 2 } = k a ^ { 2 } \sin ^ { 2 } \frac { \theta } { 2 }$$ where \(k\) is a constant to be determined. The part of the curve from \(\theta = 0\) to \(\theta = 2 \pi\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
  2. Determine the area of the surface generated, giving your answer in terms of \(\pi\) and \(a\).
    [0pt] [Solutions relying on calculator technology are not acceptable.]
Question 7
View details
  1. The plane \(\Pi\) has equation
$$\mathbf { r } = \left( \begin{array} { l } 1
2
3 \end{array} \right) + \lambda \left( \begin{array} { r } 0
3
- 2 \end{array} \right) + \mu \left( \begin{array} { l } 1
1
2 \end{array} \right)$$ where \(\lambda\) and \(\mu\) are scalar parameters.
  1. Determine a vector perpendicular to \(\Pi\) The line \(l\) meets \(\Pi\) at the point ( \(1,2,3\) ) and passes through the point ( \(1,0,1\) )
  2. Determine the size of the acute angle between \(\Pi\) and \(l\) Give your answer to the nearest degree.
  3. Determine the shortest distance between \(\Pi\) and the point \(( 6 , - 3 , - 6 )\)
Question 8
View details
8. $$I _ { n } = \int \cos ^ { n } x \mathrm {~d} x \quad n \geqslant 0$$
  1. Prove that for \(n \geqslant 2\) $$I _ { n } = \frac { 1 } { n } \cos ^ { n - 1 } x \sin x + \frac { n - 1 } { n } I _ { n - 2 }$$
  2. Show that for positive even integers \(n\) $$\int _ { 0 } ^ { \overline { 2 } } \cos ^ { n } x d x = \frac { ( n - 1 ) ( n - 3 ) \ldots 5 \times 3 \times 1 } { n ( n - 2 ) ( n - 4 ) \ldots 6 \times 4 \times 2 } \times \overline { 2 }$$
  3. Hence determine the exact value of $$\int _ { 0 } ^ { \overline { 2 } } \cos ^ { 6 } x \sin ^ { 2 } x d x$$
    GUV SIHI NI JIVM ION OCVJYV SIHI NI JIIIM ION OCVJ4V SIHIANI JIIIM ION OO
Question 9
View details
  1. The ellipse \(E\) has equation
$$x ^ { 2 } + 9 y ^ { 2 } = 9$$ The foci of \(E\) are \(F _ { 1 }\) and \(F _ { 2 }\)
    1. Determine the coordinates of \(F _ { 1 }\) and the coordinates of \(F _ { 2 }\)
    2. Write down the equation of each of the directrices of \(E\) The point \(P\) lies on the ellipse.
  1. Show that \(\left| P F _ { 1 } \right| + \left| P F _ { 2 } \right| = 6\) The straight line through \(P\) with equation \(y = 2 x + c\) meets \(E\) again at the point \(Q\) The point \(M\) is the midpoint of \(P Q\)
  2. Show that as \(P\) varies the locus of \(M\) is a straight line passing through the origin.