Edexcel FP2 (Further Pure Mathematics 2) 2012 June

Question 1
View details
  1. Find the set of values of \(x\) for which
$$\left| x ^ { 2 } - 4 \right| > 3 x$$
Question 2
View details
2. The curve \(C\) has polar equation $$r = 1 + 2 \cos \theta , \quad 0 \leqslant \theta \leqslant \frac { \pi } { 2 }$$ At the point \(P\) on \(C\), the tangent to \(C\) is parallel to the initial line.
Given that \(O\) is the pole, find the exact length of the line \(O P\).
Question 3
View details
3. (a) Express the complex number \(- 2 + ( 2 \sqrt { 3 } ) \mathrm { i }\) in the form \(r ( \cos \theta + \mathrm { i } \sin \theta ) , - \pi < \theta \leqslant \pi\).
(b) Solve the equation $$z ^ { 4 } = - 2 + ( 2 \sqrt { } 3 ) i$$ giving the roots in the form \(r ( \cos \theta + \mathrm { i } \sin \theta ) , - \pi < \theta \leqslant \pi\).
Question 4
View details
4. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 5 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 6 x = 2 \cos t - \sin t$$
Question 5
View details
5. $$x \frac { \mathrm {~d} y } { \mathrm {~d} x } = 3 x + y ^ { 2 }$$
  1. Show that $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + ( 1 - 2 y ) \frac { \mathrm { d } y } { \mathrm {~d} x } = 3$$ Given that \(y = 1\) at \(x = 1\),
  2. find a series solution for \(y\) in ascending powers of ( \(x - 1\) ), up to and including the term in \(( x - 1 ) ^ { 3 }\).
Question 6
View details
  1. (a) Express \(\frac { 1 } { r ( r + 2 ) }\) in partial fractions.
    (b) Hence prove, by the method of differences, that
$$\sum _ { r = 1 } ^ { n } \frac { 1 } { r ( r + 2 ) } = \frac { n ( a n + b ) } { 4 ( n + 1 ) ( n + 2 ) }$$ where \(a\) and \(b\) are constants to be found.
(c) Hence show that $$\sum _ { r = n + 1 } ^ { 2 n } \frac { 1 } { r ( r + 2 ) } = \frac { n ( 4 n + 5 ) } { 4 ( n + 1 ) ( n + 2 ) ( 2 n + 1 ) }$$
Question 7
View details
  1. (a) Show that the substitution \(y = v x\) transforms the differential equation
$$3 x y ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } = x ^ { 3 } + y ^ { 3 }$$ into the differential equation $$3 v ^ { 2 } x \frac { \mathrm {~d} v } { \mathrm {~d} x } = 1 - 2 v ^ { 3 }$$ (b) By solving differential equation (II), find a general solution of differential equation (I) in the form \(y = \mathrm { f } ( x )\). Given that \(y = 2\) at \(x = 1\),
(c) find the value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) at \(x = 1\)
Question 8
View details
  1. The point \(P\) represents a complex number \(z\) on an Argand diagram such that
$$| z - 6 \mathrm { i } | = 2 | z - 3 |$$
  1. Show that, as \(z\) varies, the locus of \(P\) is a circle, stating the radius and the coordinates of the centre of this circle. The point \(Q\) represents a complex number \(z\) on an Argand diagram such that $$\arg ( z - 6 ) = - \frac { 3 \pi } { 4 }$$
  2. Sketch, on the same Argand diagram, the locus of \(P\) and the locus of \(Q\) as \(z\) varies.
  3. Find the complex number for which both \(| z - 6 \mathrm { i } | = 2 | z - 3 |\) and \(\arg ( z - 6 ) = - \frac { 3 \pi } { 4 }\)