Edexcel F2 (Further Pure Mathematics 2) 2015 June

Question 1
View details
  1. Using algebra, find the set of values of \(x\) for which
$$\frac { x } { x + 2 } < \frac { 2 } { x + 5 }$$
Question 2
View details
  1. (a) Express \(\frac { 1 } { ( r + 6 ) ( r + 8 ) }\) in partial fractions.
    (b) Hence show that
$$\sum _ { r = 1 } ^ { n } \frac { 2 } { ( r + 6 ) ( r + 8 ) } = \frac { n ( a n + b ) } { 56 ( n + 7 ) ( n + 8 ) }$$ where \(a\) and \(b\) are integers to be found.
Question 3
View details
  1. (a) Show that the substitution \(z = y ^ { - 2 }\) transforms the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } + 2 x y = x \mathrm { e } ^ { - x ^ { 2 } } y ^ { 3 }$$ into the differential equation $$\frac { \mathrm { d } z } { \mathrm {~d} x } - 4 x z = - 2 x \mathrm { e } ^ { - x ^ { 2 } }$$ (b) Solve differential equation (II) to find \(z\) as a function of \(x\).
(c) Hence find the general solution of differential equation (I), giving your answer in the form \(y ^ { 2 } = \mathrm { f } ( x )\).
Question 4
View details
  1. A transformation \(T\) from the \(z\)-plane to the \(w\)-plane is given by
$$w = \frac { z - 1 } { z + 1 } , \quad z \neq - 1$$ The line in the \(z\)-plane with equation \(y = 2 x\) is mapped by \(T\) onto the curve \(C\) in the \(w\)-plane.
  1. Show that \(C\) is a circle and find its centre and radius. The region \(y < 2 x\) in the \(z\)-plane is mapped by \(T\) onto the region \(R\) in the \(w\)-plane.
  2. Sketch circle \(C\) on an Argand diagram and shade and label region \(R\).
Question 5
View details
  1. Given that \(y = \cot x\),
    1. show that
    $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 2 \cot x + 2 \cot ^ { 3 } x$$
  2. Hence show that $$\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } = p \cot ^ { 4 } x + q \cot ^ { 2 } x + r$$ where \(p , q\) and \(r\) are integers to be found.
  3. Find the Taylor series expansion of \(\cot x\) in ascending powers of \(\left( x - \frac { \pi } { 3 } \right)\) up to and including the term in \(\left( x - \frac { \pi } { 3 } \right) ^ { 3 }\).
Question 6
View details
  1. (a) Find the general solution of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } - 3 y = 2 \sin x$$ Given that \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\) when \(x = 0\)
(b) find the particular solution of differential equation (I).
Question 7
View details
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ee9a9df3-f7a4-41d0-bf8b-e44340c401d6-13_458_933_251_504} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the two curves given by the polar equations $$\begin{array} { l l } r = \sqrt { 3 } \sin \theta , & 0 \leqslant \theta \leqslant \pi
r = 1 + \cos \theta , & 0 \leqslant \theta \leqslant \pi \end{array}$$
  1. Verify that the curves intersect at the point \(P\) with polar coordinates \(\left( \frac { 3 } { 2 } , \frac { \pi } { 3 } \right)\). The region \(R\), bounded by the two curves, is shown shaded in Figure 1.
  2. Use calculus to find the exact area of \(R\), giving your answer in the form \(a ( \pi - \sqrt { 3 } )\), where \(a\) is a constant to be found.
Question 8
View details
  1. (a) Show that
$$\left( z + \frac { 1 } { z } \right) ^ { 3 } \left( z - \frac { 1 } { z } \right) ^ { 3 } = z ^ { 6 } - \frac { 1 } { z ^ { 6 } } - k \left( z ^ { 2 } - \frac { 1 } { z ^ { 2 } } \right)$$ where \(k\) is a constant to be found. Given that \(z = \cos \theta + \mathrm { i } \sin \theta\), where \(\theta\) is real,
(b) show that
  1. \(z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta\)
  2. \(z ^ { n } - \frac { 1 } { z ^ { n } } = 2 \mathrm { i } \sin n \theta\)
    (c) Hence show that $$\cos ^ { 3 } \theta \sin ^ { 3 } \theta = \frac { 1 } { 32 } ( 3 \sin 2 \theta - \sin 6 \theta )$$ (d) Find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 8 } } \cos ^ { 3 } \theta \sin ^ { 3 } \theta d \theta$$