Edexcel FP1 (Further Pure Mathematics 1) 2011 June

Question 1
View details
1. $$f ( x ) = 3 ^ { x } + 3 x - 7$$
  1. Show that the equation \(\mathrm { f } ( x ) = 0\) has a root \(\alpha\) between \(x = 1\) and \(x = 2\).
  2. Starting with the interval \([ 1,2 ]\), use interval bisection twice to find an interval of width 0.25 which contains \(\alpha\).
Question 2
View details
2. $$z _ { 1 } = - 2 + \mathrm { i }$$
  1. Find the modulus of \(z _ { 1 }\).
  2. Find, in radians, the argument of \(z _ { 1 }\), giving your answer to 2 decimal places. The solutions to the quadratic equation $$z ^ { 2 } - 10 z + 28 = 0$$ are \(z _ { 2 }\) and \(z _ { 3 }\).
  3. Find \(z _ { 2 }\) and \(z _ { 3 }\), giving your answers in the form \(p \pm i \sqrt { } q\), where \(p\) and \(q\) are integers.
  4. Show, on an Argand diagram, the points representing your complex numbers \(z _ { 1 } , z _ { 2 }\) and \(z _ { 3 }\).
Question 3
View details
3. (a) Given that $$\mathbf { A } = \left( \begin{array} { c c } 1 & \sqrt { } 2
\sqrt { } 2 & - 1 \end{array} \right)$$
  1. find \(\mathbf { A } ^ { 2 }\),
  2. describe fully the geometrical transformation represented by \(\mathbf { A } ^ { 2 }\).
    (b) Given that $$\mathbf { B } = \left( \begin{array} { r r } 0 & - 1
    - 1 & 0 \end{array} \right)$$ describe fully the geometrical transformation represented by \(\mathbf { B }\).
    (c) Given that $$\mathbf { C } = \left( \begin{array} { c c } k + 1 & 12
    k & 9 \end{array} \right)$$ where \(k\) is a constant, find the value of \(k\) for which the matrix \(\mathbf { C }\) is singular.
Question 4
View details
4. $$f ( x ) = x ^ { 2 } + \frac { 5 } { 2 x } - 3 x - 1 , \quad x \neq 0$$
  1. Use differentiation to find \(\mathrm { f } ^ { \prime } ( x )\). The root \(\alpha\) of the equation \(\mathrm { f } ( x ) = 0\) lies in the interval [0.7, 0.9].
  2. Taking 0.8 as a first approximation to \(\alpha\), apply the Newton-Raphson process once to \(\mathrm { f } ( x )\) to obtain a second approximation to \(\alpha\). Give your answer to 3 decimal places.
Question 5
View details
5. \(\mathbf { A } = \left( \begin{array} { r r } - 4 & a
b & - 2 \end{array} \right)\), where \(a\) and \(b\) are constants. Given that the matrix \(\mathbf { A }\) maps the point with coordinates \(( 4,6 )\) onto the point with coordinates \(( 2 , - 8 )\),
  1. find the value of \(a\) and the value of \(b\). A quadrilateral \(R\) has area 30 square units.
    It is transformed into another quadrilateral \(S\) by the matrix \(\mathbf { A }\).
    Using your values of \(a\) and \(b\),
  2. find the area of quadrilateral \(S\).
Question 6
View details
6. Given that \(z = x + \mathrm { i } y\), find the value of \(x\) and the value of \(y\) such that $$z + 3 \mathrm { i } z ^ { * } = - 1 + 13 \mathrm { i }$$ where \(z ^ { * }\) is the complex conjugate of \(z\).
Question 7
View details
7. (a) Use the results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that $$\sum _ { r = 1 } ^ { n } ( 2 r - 1 ) ^ { 2 } = \frac { 1 } { 3 } n ( 2 n + 1 ) ( 2 n - 1 )$$ for all positive integers \(n\).
(b) Hence show that $$\sum _ { r = n + 1 } ^ { 3 n } ( 2 r - 1 ) ^ { 2 } = \frac { 2 } { 3 } n \left( a n ^ { 2 } + b \right)$$ where \(a\) and \(b\) are integers to be found.
Question 8
View details
8. The parabola \(C\) has equation \(y ^ { 2 } = 48 x\). The point \(P \left( 12 t ^ { 2 } , 24 t \right)\) is a general point on \(C\).
  1. Find the equation of the directrix of \(C\).
  2. Show that the equation of the tangent to \(C\) at \(P \left( 12 t ^ { 2 } , 24 t \right)\) is $$x - t y + 12 t ^ { 2 } = 0$$ The tangent to \(C\) at the point \(( 3,12 )\) meets the directrix of \(C\) at the point \(X\).
  3. Find the coordinates of \(X\).
Question 9
View details
9. Prove by induction, that for \(n \in \mathbb { Z } ^ { + }\),
  1. \(\left( \begin{array} { l l } 3 & 0
    6 & 1 \end{array} \right) ^ { n } = \left( \begin{array} { c c } 3 ^ { n } & 0
    3 \left( 3 ^ { n } - 1 \right) & 1 \end{array} \right)\),
  2. \(\mathrm { f } ( n ) = 7 ^ { 2 n - 1 } + 5\) is divisible by 12 .