CAIE P2 (Pure Mathematics 2) 2021 November

Question 1
View details
1 The polynomial \(\mathrm { p } ( x )\) is defined by $$\mathrm { p } ( x ) = a x ^ { 3 } + b x - 10$$ where \(a\) and \(b\) are constants. It is given that \(( x + 2 )\) is a factor of \(\mathrm { p } ( x )\) and that the remainder is - 55 when \(\mathrm { p } ( x )\) is divided by \(( x + 3 )\).
  1. Find the values of \(a\) and \(b\).
  2. Hence factorise \(\mathrm { p } ( x )\) completely.
Question 2
View details
2
  1. Sketch, on the same diagram, the graphs of \(y = x + 3\) and \(y = | 2 x - 1 |\).
  2. Solve the equation \(x + 3 = | 2 x - 1 |\).
  3. Find the value of \(y\) such that \(5 ^ { \frac { 1 } { 2 } y } + 3 = \left| 2 \times 5 ^ { \frac { 1 } { 2 } y } - 1 \right|\). Give your answer correct to 3 significant figures.
Question 3
View details
3 The curve with equation $$y = 5 x - 2 \tan 2 x$$ has exactly one stationary point in the interval \(0 \leqslant x < \frac { 1 } { 4 } \pi\).
Find the coordinates of this stationary point, giving each coordinate correct to 3 significant figures.
Question 4
View details
4 Given that \(\int _ { a } ^ { a + 14 } \frac { 1 } { 3 x } \mathrm {~d} x = \ln 2\), find the value of the positive constant \(a\).
Question 5
View details
5 A curve has equation \(x ^ { 2 } + 4 x \cos 3 y = 6\).
Find the exact value of the gradient of the normal to the curve at the point \(\left( \sqrt { 2 } , \frac { 1 } { 12 } \pi \right)\).
Question 6
View details
6
  1. By sketching a suitable pair of graphs on the same diagram, show that the equation $$\ln x = 2 \mathrm { e } ^ { - x }$$ has exactly one root.
  2. Verify by calculation that the root lies between 1.5 and 1.6.
  3. Show that if a sequence of values given by the iterative formula $$x _ { n + 1 } = \mathrm { e } ^ { 2 \mathrm { e } ^ { - x _ { n } } }$$ converges, then it converges to the root of the equation in part (a).
  4. Use the iterative formula in part (c) to determine the root correct to 3 significant figures. Give the result of each iteration to 5 significant figures.
Question 7
View details
7
  1. Prove that \(4 \sin x \sin \left( x + \frac { 1 } { 6 } \pi \right) \equiv \sqrt { 3 } - \sqrt { 3 } \cos 2 x + \sin 2 x\).
  2. Find the exact value of \(\int _ { 0 } ^ { \frac { 5 } { 6 } \pi } 4 \sin x \sin \left( x + \frac { 1 } { 6 } \pi \right) \mathrm { d } x\).
  3. Find the smallest positive value of \(y\) satisfying the equation $$4 \sin ( 2 y ) \sin \left( 2 y + \frac { 1 } { 6 } \pi \right) = \sqrt { 3 } .$$ Give your answer in an exact form.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.